[1]
|
Van de Craen, B., Declerck, P.J. and Gils, A. (2012) The Biochemistry, Physiology and Pathological Roles of PAI-1 and the Requirements for PAI-1 Inhibition in vivo. Thrombosis Research, 130, 576-585. https://doi.org/10.1016/j.thromres.2012.06.023
|
[2]
|
Kohler, H.P. and Grant, P.J. (2000) Plasminogen-Activator Inhibitor Type 1 and Coronary Artery Disease. New England Journal of Medicine, 42, 1792-1801.
https://doi.org/10.1056/NEJM200006153422406
|
[3]
|
Yamamoto, K. and Saito, H. (1998) A Pathological Role of Increased Expression of Plasminogen Activator Inhibitor-1 in Human or Animal Disorders. International Journal of Hematology, 68, 371-385.
https://doi.org/10.1016/S0925-5710(98)00094-2
|
[4]
|
Yamamoto, K., Takeshita, K. and Saito, H. (2014) Plasminogen Activator Inhibitor-1 in Aging. Seminars in Thrombosis and Hemostasis, 40, 652-659.
https://doi.org/10.1055/s-0034-1384635
|
[5]
|
Kruithof, E.K. (2008) Regulation of Plasminogen Activator Inhibitor Type 1 Gene Expression by Inflammatory Mediators and Statins. Thrombosis and Hemostasis, 100, 969-975. https://doi.org/10.1160/TH08-04-0269
|
[6]
|
Brown, N.J. (2010) Therapeutic Potential of Plasminogen Activator Inhibitor-1 Inhibitors. Review. Therapeutic Advances in Cardiovascular Disease, 4, 315-324.
https://doi.org/10.1177/1753944710379126
|
[7]
|
Levi, M., van der Poll, T. and Schultz, M. (2012) Infection and Inflammation as Risk Factors for Thrombosis and Atherosclerosis. Seminars in Thrombosis and Hemostasis, 38, 506-514. https://doi.org/10.1055/s-0032-1305782
|
[8]
|
Esmon, C.T. (2003) Inflammation and Thrombosis. Journal of Thrombosis and Haemostasis, 1, 1343-1348. https://doi.org/10.1046/j.1538-7836.2003.00261.x
|
[9]
|
Zhou, Z., Liu, Y., Miao, A.D. and Wang, S.Q. (2005) Salvianolic Acid B Attenuates Plasminogen Activator Inhibitor Type 1 Production in TNF-Alpha Treated Human Umbilical Vein Endothelial Cells. Journal of Cellular Biochemistry, 96, 109-116.
https://doi.org/10.1002/jcb.20567
|
[10]
|
Liu, J., Ying, C., Meng, Y., Yi, W., Fan, Z., Zuo, X., Tian, C. and Sun, X. (2009) Green Tea Polyphenols Inhibit Plasminogen Activator Inhibitor-1 Expression and Secretion in Endothelial Cells. Blood Coagulation and Fibrinolysis, 20, 552-557.
https://doi.org/10.1097/MBC.0b013e32832e05f0
|
[11]
|
Giménez-Bastida, J.A., Martínez-Florensa, M., Espín, J.C., Tomás-Barberán, F.A. and García-Conesa, M.T. (2009) A Citrus Extract Containing Flavanones Represses Plasminogen Activator Inhibitor-1 (PAI-1) Expression and Regulates Multiple Inflammatory, Tissue Repair, and Fibrosis Genes in Human Colon Fibroblasts. Journal of Agricultural and Food Chemistry, 57, 9305-9315.
https://doi.org/10.1021/jf901983g
|
[12]
|
Ohkura, N., Nakakuki, Y., Taniguchi, M., Kanai, S., Nakayama, A., Ohnishi, K., Sakata, T., Nohira, T., Matsuda, J., Baba, K. and Atsumi, G. (2011) Xanthoangelols Isolated from Angelica Keiskei Inhibit Inflammatory-Induced Plasminogen Activator Inhibitor 1 (PAI-1) Production. Biofactors, 37, 455-461.
https://doi.org/10.1002/biof.187
|
[13]
|
Ohkura, N., Takata, Y., Ando, K., Kanai, S., Watanabe, E., Nohira, T. and Atsumi, G.I. (2012) Propolis and Its Constituent Chrysin Inhibit Plasminogen Activator Inhibitor 1 Production Induced by Tumour Necrosis Factor-α and Lipopolysaccharide. Journal of Apicultural Research, 51, 179-184.
https://doi.org/10.3896/IBRA.1.51.2.06
|
[14]
|
Tong, L.T., Katakura, Y., Kawamura, S., Baba, S., Tanaka, Y., Udono, M., Kondo, Y., Nakamura, K., Imaizumi, K. and Sato, M. (2010) Effects of Kurozu Concentrated Liquid on Adipocyte Size in Rats. Lipids in Health and Disease, 9, 134-143.
https://doi.org/10.1186/1476-511X-9-134
|
[15]
|
Shimoji, Y., Tamura, Y., Nakamura, Y., Nanda, K., Nishidai, S., Nishikawa, Y., Ishihara, N., Uenakai, K. and Ohigashi, H. (2002) Isolation and Identification of DPPH Radical Scavenging Compounds in Kurosu (Japanese Unpolished Rice Vinegar). Journal of Agricultural and Food Chemistry, 50, 6501-6503.
https://doi.org/10.1021/jf020458f
|
[16]
|
Nanda, K., Taniguchi, M., Ujike, S., Ishihara, N., Mori, H., Ono, H. and Murooka, Y. (2001) Characterization of Acetic Acid Bacteria in Traditional Acetic Acid Fermentation of Rice Vinegar (Komesu) and Unpolished Rice Vinegar (Kurosu) Produced in Japan. Applied and Environmental Microbiology, 67, 986-990.
https://doi.org/10.1128/AEM.67.2.986-990.2001
|
[17]
|
Kanouchi, H., Kakimoto, T., Nakano, H., Suzuki, M., Nakai, Y., Shiozaki, K., Akikoka, K., Otomaru, K., Nagano, M. and Matsumoto, M. (2016) The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice. PLoS ONE, 11, e0150796.
https://doi.org/10.1371/journal.pone.0150796
|
[18]
|
Nanda, K., Miyoshi, N., Nakamura, Y., Shimoji, Y., Tamura, Y., Nishikawa, Y., Uenakai, K., Kohno, H. and Tanaka, T. (2004) Extract of Vinegar “Kurosu” from Unpolished Rice Inhibits the Proliferation of Human Cancer Cells. Journal of Experimental and Clinical Cancer Research, 23, 69-75.
|
[19]
|
Shimoji, Y., Kohno, H., Nanda, K., Nishikawa, Y., Ohigashi, H., Uenakai, K. and Tanaka, T. (2004) Extract of Kurosu, a Vinegar from Unpolished Rice, Inhibits Azoxymethane-Induced Colon Carcinogenesis in Male F344 Rats. Nutrition and Cancer, 49, 170-173. https://doi.org/10.1207/s15327914nc4902_8
|
[20]
|
Shizuma, T., Ishiwata, K., Nagano, M., Mori, H. and Fukuyama, N. (2011) Protective Effects of Kurozu and Kurozu Moromimatsu on Dextran Sulfate Sodium-Induced Experimental Colitis. Digestive Diseases and Sciences, 56, 1387-1392. https://doi.org/10.1007/s10620-010-1432-x
|
[21]
|
Nishidai, S., Nakamura, Y., Torikai, K., Yamamoto, M., Ishihara, N., Mori, H. and Ohigashi, H. (2000) Kurosu, a Traditional Vinegar Produced from Unpolished Rice, Suppresses Lipid Peroxidation in Vitro and in Mouse Skin. Bioscience Biotechnology Biochemistry, 64, 1909-1914. https://doi.org/10.1271/bbb.64.1909
|
[22]
|
Fukuyama, N., Jujo, S., Ito, I., Shizuma, T., Myojin, K., Ishiwata, K., Nagano, M., Nakazawa, H. and Mori, H. (2007) Kurozu Moromimatsu Inhibits Tumor Growth of Lovo Cells in a Mouse Model in Vivo. Nutrition, 23, 81-86.
https://doi.org/10.1016/j.nut.2006.10.004
|
[23]
|
Shizuma, T., Ishiwata, K., Nagano, M., Mori, H. and Fukuyama, N. (2011) Protective Effects of Fermented Rice Vinegar Sediment (Kurozu Moromimatsu) in a Diethylnitrosamine-Induced Hepatocellular Carcinoma Animal Model. Journal of Clinical Biochemistry and Nutrition, 49, 31-35. https://doi.org/10.3164/jcbn.10-112
|
[24]
|
Asakura, H., Aoshima, K., Suga, Y., Yamazaki, M., Morishita, E., Saito, M., Miyamoto, K. and Nakao, S. (2001) Beneficial Effect of the Active Form of Vitamin D3 against LPS-Induced DIC But Not against Tissue-Factor-Induced DIC in Rat Models. Thrombosis and Haemostasis, 85, 287-290.
|
[25]
|
Hollinger, K., Shanely, R.A., Quindry, J.C. and Selsby, J.T. (2015) Long-Term Quercetin Dietary Enrichment Decreases Muscle Injury in Mdx Mice. Clinical Nutrition, 34, 515-522. https://doi.org/10.1016/j.clnu.2014.06.008
|
[26]
|
Saini, A., Harjai, K., Mohan, H., Punia, R.P. and Chhibber, S. (2010) Long-Term Flaxseed Oil Supplementation Diet Protects BALB/c Mice against Streptococcus pneumoniae Infection. Medical Microbiology and Immunology, 199, 27-34.
https://doi.org/10.1007/s00430-009-0132-7
|
[27]
|
Jing, L., Yanyanb, Z. and Junfeng, F. (2015) Acetic Acid in Aged Vinegar Affects Molecular Targets for Thrombus Disease Management. Food and Function, 6, 2845-2853. https://doi.org/10.1039/C5FO00327J
|
[28]
|
Haruta, S., Ueno, S., Egawa, I., Hashiguchi, K., Fujii, A., Nagano, M., Ishii, M. and Igarashi, Y. (2006) Succession of Bacterial and Fungal Communities during a Traditional Pot Fermentation of Rice Vinegar Assessed by PCR-Mediated Denaturing Gradient Gel Electrophoresis. International Journal of Food Microbiology, 109, 79-87. https://doi.org/10.1016/j.ijfoodmicro.2006.01.015
|
[29]
|
Ghosh, S., Basak, P., Dutta, S., Chowdhury, S. and Sil, P.C. (2017) New Insights into the Ameliorative Effects of Ferulic Acid in Pathophysiological Conditions. Food and Chemical Toxicology, 103, 41-55. https://doi.org/10.1016/j.fct.2017.02.028
|
[30]
|
Dimova, E.Y. and Kietzmann, T. (2008) Metabolic, Hormonal and Environmental Regulation of Plasminogen Activator Inhibitor-1 (PAI-1) Expression: Lessons from the Liver. Thrombosis and Haemostasis, 100, 992-1006.
|
[31]
|
Barnard, S.A., Pieters, M. and De Lange, Z. (2016) The Contribution of Different Adipose Tissue Depots to Plasma Plasminogen Activator Inhibitor-1 (PAI-1) Levels. Blood Reviews, 30, 421-429. https://doi.org/10.1016/j.blre.2016.05.002
|
[32]
|
Ohkura, N., Shirakura, M., Nakatani, E., Oishi, K. and Atsumi, G.I. (2012) Associations between Plasma PAI-1 Concentrations and Its Expressions in Various Organs in Obese Model Mice. Thrombosis Research, 130, e301-e304.
https://doi.org/10.1016/j.thromres.2012.08.297
|
[33]
|
Ohkura, N., Oishi, K., Nakakuki, Y., Miura, M. and Atsumi, G.I. (2013) Lipopolysaccharide-Induced Plasma PAI-1 Increase Does Not Correlate with PAI-1 Synthesised de novo in the Liver. Thrombosis Research, 132, 398-399.
https://doi.org/10.1016/j.thromres.2013.06.008
|
[34]
|
Samad, F., Yamamoto, K. and Loskutoff, D.J. (1996) Distribution and Regulation of Plasminogen Activator Inhibitor-1 in Murine Adipose Tissue in Vivo. Induction by Tumor Necrosis Factor-Alpha and Lipopolysaccharide. Journal of Clinical Investigation, 97, 37-46. https://doi.org/10.1172/JCI118404
|
[35]
|
Becarevic, M., Ignjatovic, S. and Majkic-Singh, N. (2012) Deterioration of Thromboses in Primary Antiphospholipid Syndrome: TNF-Alpha and Anti-Annexin A5 Antibodies. Clinical Laboratory, 58, 1079-1084.
|
[36]
|
Balsara, R.D., Xu, Z. and Ploplis, V.A. (2007) Targeting Plasminogen Activator Inhibitor-1: Role in Cell Signaling and the Biology of Domain-Specific Knock-In Mice. Current Drug Targets, 8, 982-995.
https://doi.org/10.2174/138945007781662382
|
[37]
|
Chen, R., Yan, J., Liu, P., Wang, Z. and Wang, C. (2017) Plasminogen Activator Inhibitor Links Obesity and Thrombotic Cerebrovascular Diseases: The Roles of PAI-1 and Obesity on Stroke. Metabolic Brain Disease, 32, 667-673.
https://doi.org/10.1007/s11011-017-0007-3
|