Shifts in Circulating Concentrations of Glucose in Domesticated Mammals: Is There a Consistent Adaptation to Domestication?

Abstract

There have been marked changes in amylase gene number during human evolution resulting in shifts in carbohydrate metabolism. This has been related to utilization of starch. Similarly, there are changes in enzymes related to carbohydrate metabolism in dogs. Again, this has been linked to improving starch utilization following domestication. It was questioned as circulating concentrations of glucose is a good indicator of putative differences in carbohydrate metabolism across domesticated animals. Domesticated bovids had lower (p < 0.001) circulating concentrations of glucose than wild species in their respective subfamilies. Circulating concentrations of glucose were consistently lower (p < 0.001) in domesticated animals compared to either closely related wild species or the mean for wild species in their subfamilies (or families where there is insufficient data available). It is suggested that shift to lower circulating concentrations of glucose in domesticated animals is related to greater starch intake following domestication in a manner akin to the shifts in carbohydrate metabolism and amylase gene number in human evolution.

Share and Cite:

Scanes, C. (2014) Shifts in Circulating Concentrations of Glucose in Domesticated Mammals: Is There a Consistent Adaptation to Domestication?. Food and Nutrition Sciences, 5, 1652-1659. doi: 10.4236/fns.2014.517178.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Meisler, M.H. and Ting, C.N. (1993) There Markable Evolutionary History of the Human Amylase Genes. Critical Reviews in Oral Biology and Medicine, 4, 503-509.
[2] Perry, G.H., Dominy, N.J., Claw, K.G., Lee, A.S., Fiegler, H., Redon, R., Werner, J., Villanea, F.A., Mountain, J.L., Misra, R., Carter, N.P., Lee, C. and Stone, A.C. (2007) Diet and the Evolution of Human Amylase Gene Copy Number Variation. Nature Genetics, 39, 1256-1260.
http://dx.doi.org/10.1038/ng2123
[3] Santos, J.L., Saus, E., Smalley, S.V., Cataldo, L.R., Alberti, G., Parada, J., Gratacòs, M. and Estivill, X. (2012) Copy Number Polymorphism of the Salivary Amylase Gene: Implications in Human Nutrition Research. Journal of Nutrige- netics and Nutrigenomics, 5, 117-131.
http://dx.doi.org/10.1159/000339951
[4] Mandel, A.L., Peyrot des Gachons, C., Plank, K.L., Alarcon, S. and Breslin, P.A. (2010) Individual Differences in AMY1 Gene Copy Number, Salivary α-Amylase Levels, and the Perception of Oral Starch. PLoS One, 5, Article ID: e13352.
http://dx.doi.org/10.1371/journal.pone.0013352
[5] Mandel, A.L. and Breslin, P.A. (2012) High Endogenous Salivary Amylase Activity Is Associated with Improved Glycemic Homeostasis Following Starch Ingestion in Adults. Journal of Nutrition, 142, 853-858.
http://dx.doi.org/10.3945/jn.111.156984
[6] Axelsson, E., Ratnakumar, A., Arendt, M.L., Maqbool, K., Webster, M.T., Perloski, M., Liberg, O., Arnemo, J.M., Hedhammar, A. and Lindblad-Toh, K. (2013) The Genomic Signature of Dog Domestication Reveals Adaptation to a Starch-Rich Diet. Nature, 495, 360-364.
http://dx.doi.org/10.1038/nature11837
[7] Araya, A.V., Atwater, I., Navia, M.A. and Jeffs, S. (2000) Evaluation of Insulin Resistance in Two Kinds of South American Camelids: Llamas and Alpaca. Comparative Medicine, 50, 490-494.
[8] Dawson, D.R., DeFrancisco, R.J., Mix, S.D. and Stokol, T. (2011) Reference Intervals for Biochemical Analytes in Serum and Heparinized Plasma and Serum Protein Fractions in Adult Alpacas (Vicugna pacos). Veterinary Clinical Pathology, 40, 538-548.
[9] Bonacic, C. and MacDonald, D.W. (2003) The Physiological Impact of Wool-Harvesting Procedures in Vicunas (Vi- cugna vicugna). Animal Welfare, 12, 387-402.
[10] Siguas, O. and Olazábal, J. (2008) Perfil sanguíneo de vicu?as del CICDC Lachocc Huancavelica. Archivos de Zootec- nia, 57, 87-90.
[11] Chugani, H.T., Hovda, D.A., Villablanca, J.R., Phelps, M.E. and Xu, W.F. (1991) Metabolic Maturation of the Brain: A Study of Local Cerebral Glucose Utilization in the Developing Cat. Journal of Cerebral Blood Flow and Metabolism, 11, 35-47.
http://dx.doi.org/10.1038/jcbfm.1991.4
[12] Marco, I., Martinez, F., Pastor, J. and Lavin, S. (2000) Hematologic and Serum Chemistry Values of the Captive European Wildcat. Journal of Wildlife Disease, 36, 445-449.
http://dx.doi.org/10.7589/0090-3558-36.3.445
[13] Wolford, S.T., Schroer, R.A., Gohs, F.X., Gallo, P.P., Brodeck, M., Falk, H.B. and Ruhren, R. (1986) Reference Range Data Base for Serum Chemistry and Hematology Values in Laboratory Animals. Journal of Toxicology and Environmental Health, 18, 161-188.
http://dx.doi.org/10.1080/15287398609530859
[14] Lumsden, J.H., Mullen, K. and McSherry, B.J. (1979) Canine Hematology and Biochemical Reference Values. Canadian Journal of Comparative Medicine, 43, 125-131.
[15] Delgiudice, G.D., Seal, U.S. and Mech L.D. (1987) Effects of Feeding and Fasting on Wolf Blood and Urine Characteristics. Journal of Wildlife Management, 51, 1-10.
http://dx.doi.org/10.2307/3801752
[16] Constable, P., Hinchcliff, K., Demma, N., Callahan, M., Dale, B., Fox, K., Adams, L., Wack, R. and Kramer, L. (1998) Serum Biochemistry of Captive and Free-Ranging Gray Wolves (Canis lupus). Journal of Zoo and Wildlife Medicine, 29, 435-440.
[17] Butler, M.J., Ballard, W.B. and Whitlaw, H.A. (2006) Physical Characteristics, Hematology and Serum Biochemistry of Free-Ranging Gray Wolves, Canis lupus, in Southeast Alaska. Canadian Field-Naturalist, 120, 205-212.
[18] Thoresen, S.I., Arnemo, J.M. and Liberg, O. (2009) Hematology and Serum Clinical Chemistry Reference Intervals for Free-Ranging Scandinavian Gray Wolves (Canis lupus). Veterinary Clinical Pathology, 38, 224-229.
http://dx.doi.org/10.1111/j.1939-165X.2008.00105.x
[19] Lee, E.J., Moore, W.E., Fryer, H.C. and Minocha, H.C. (1982) Haematological and Serum Chemistry Profiles of Ferrets (Mustela putorius furo). Lab Animals, 16, 133-137.
http://dx.doi.org/10.1258/002367782781110241
[20] Mustonen, A.M., Puukka, M., Rouvinen-Watt, K., Aho, J., Asikainen, J. and Nieminen, P. (2009) Response to Fasting in an Unnaturally Obese Carnivore, the Captive European Polecat Mustela putorius. Experimental Biology and Medicine (Maywood), 234, 1287-1295.
http://dx.doi.org/10.3181/0904-RM-140
[21] Christensen, R.A., Malinowski, K., Massenzio, A.M., Hafs, H.D. and Scanes, C.G. (1997) Acute Effects of Short-Term Feed Deprivation and Refeeding on Circulating Concentrations of Metabolites, Insulin-Like Growth Factor I, Insulin-Like Growth Factor Binding Proteins, Somatotropin, and Thyroid Hormones in Adult Geldings. Journal of Animal Science, 75, 1351-1581.
[22] Nadal, M.R., Thompson, D.L. and Kincaid, L.A. (1997) Effect of Feeding and Feed Deprivation on Plasma Concentrations of Prolactin, Insulin, Growth Hormone, and Metabolites in Horses. Journal of Animal Science, 75, 736-744.
[23] Simenew, K., Gezahegne, M., Getachew, M., Wondyefraw, M., Alemayehu, L. and Eyob, I. (2011) Reference Values of Clinically Important Physiological, Hematological and Serum Biochemical Parameters of Apparently Healthy Working Equids of Ethiopia. Global Veterinaria, 7, 1-6.
[24] Orlando, L.,Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B., Moltke, I., Johnson, P.L., Fumagalli, M., Vilstrup, J.T., Raghavan, M., Korneliussen, T., Malaspinas, A.S., Vogt, J., Szklarczyk, D., Kelstrup, C.D., Vinther, J., Dolocan, A., Stenderup, J., Velazquez, A.M., Cahill, J., Rasmussen, M., Wang, X., Min, J., Zazula, G.D., Seguin-Orlando, A., Mortensen, C., Magnussen, K., Thompson, J.F., Weinstock, J., Gregersen, K., R?ed, K.H., Eisenmann, V., Rubin, C.J., Miller, D.C., Antczak, D.F., Bertelsen, M.F., Brunak, S., Al-Rasheid, K.A., Ryder, O., Andersson, L., Mundy, J., Krogh, A., Gilbert, M.T., Kjær, K., Sicheritz-Ponten, T., Jensen, L.J., Olsen, J.V., Hofreiter, M., Nielsen, R., Shapiro, B., Wang J. and Willerslev, E. (2013) Recalibrating Equus Evolution Using the Genome Sequence of an Early Middle Pleistocene Horse. Nature, 499, 74-78.
http://dx.doi.org/10.1038/nature12323??
[25] Kutter, C. and Wiesner, H. (1987) Changes of Blood Values in Przewalski Horses (Equus przew alski przew alski) and Zebras (Equus zebra hartmannae) during Chemical Immobilization. Journal of Zoo Animal Medicine, 18, 144-147.
http://dx.doi.org/10.2307/20094827
[26] Fowler, M.E. (2003) Camelidae. In: Fowler, M.E. and Miller, R.E., Eds., Zoo and Wild Animal Medicine, 5th Edition, Saunders, St. Louis, 612-625.
[27] Karesh, W.B., Uhart, M.M., Dierenfeld, E.S., Braselton, W.E., Torres, A., House, C., Puche, H. and Cook, R.A. (1998) Health Evaluation of Free-Ranging Guanaco (Lama guanicoe). Journal of Zoo and Wildlife Medicine, 29, 134-141.
[28] Harapin, I., Bedrica, L., Hahn, V., SoStaric, B. and Gra?ner, D. (2003) Haematological and Biochemical Values in Blood of Wild Boar (Sus scrofa ferus). Veterinarski Archiv, 73, 333-343.?
[29] Iozzo, P., Gastaldelli, A., Järvisalo, M.J., Kiss, J., Borra, R., Buzzigoli, E., Viljanen, A., Naum, G., Viljanen, T., Oikonen, V., Knuuti, J., Savunen, T., Salvadori, P.A., Ferrannini, E. and Nuutila, P. (2006) 18F-FDG Assessment of Glucose Disposal and Production Rates during Fasting and Insulin Stimulation: A Validation Study. Journal of Nuclear Medicine, 47, 1016-1022.?
[30] Chmielowiec-Korzeniowska, A., Leszek, T. and Babicz, M. (2012) Assessment of Selected Parameters of Biochemistry, Hematology, Immunology and Production of Pigs Fattened in Different Seasons. Archiv fuer Tierzucht, 55, 469- 479.
[31] Williamson, M.J. (1972) Some Hematological and Serum Biochemical Values of European Wild Hogs (Sus scrofa). Master’s Thesis, University of Tennessee, Knoxvile.
[32] Vidal, D., Naranjo, V., Mateo, R., Gortazar, C. and de la Fuente, J. (2006) Analysis of Serum Biochemical Parameters in Relation to Mycobacterium bovis Infection of European Wild Boars (Sus scrofa) in Spain. European Journal of Wildlife Research, 52, 301-304.
http://dx.doi.org/10.1007/s10344-006-0062-2
[33] Nieminen, M. (1980) Nutritional and Seasonal Effects on the Haematology and Blood Chemistry in Reindeer (Rangifer tarandus tarandus L.). Comparative Biochemistry and Physiology, 66, 399-413.
http://dx.doi.org/10.1016/0300-9629(80)90186-3
[34] Johnson, D., Harms, N.J., Larter, N.C., Elkin, B.T., Tabel, H. and Wei, G. (2010) Serum Biochemistry, Serology, and Parasitology of Borial Caribou (Rangifer tarandus caribou) in the North West Territories, Canada. Journal of Wildlife Disease, 46, 1096-1107.
http://dx.doi.org/10.7589/0090-3558-46.4.1096
[35] Khan, S.A., Epstein, J.H., Olival, K.J., Hassan, M.M., Hossain, M.B., Rahman, K.B.M.A., Elahi, M.F., Mamun, M.A., Haider, N., Yasin G. and Desmond, J. (2011) Hematology and Serum Chemistry Reference Values of Stray Dogs in Bangladesh. Open Veterinary Journal, 1, 13-20.
[36] Shender, L.A., Botzler, R.G. and George, T.L. (2002) Analysis of Serum and Whole Blood Values in Relation to Helminth and Ectoparasite Infections of Feral Pigs in Texas. Journal of Wildlife Disease, 38, 385-394.
http://dx.doi.org/10.7589/0090-3558-38.2.385
[37] McAtee, J.W. and Trenkle, A. (1971) Effect of Feeding, Fasting and Infusion of Energy Substrates on Plasma Growth Hormone Levels in Cattle. Journal of Animal Science, 33, 612-616.
[38] McAtee, J.W. and Trenkle, A. (1971) Effects of Feeding, Fasting, Glucose or Arginine on Plasma Prolactin Levels in the Bovine. Endocrinology, 89, 730-734.
http://dx.doi.org/10.1210/endo-89-3-730
[39] Akhatar, M.Z., Khan, A., Khan, M.Z. and Javaid, A. (2008) Patho-Biochemical Changes in Buffaloes (Bubalus bubalis) Suffering from Parturient Haemoglobinuria. Pakistan Veterinary Journal, 28, 139-143.
[40] Nath, N.C., Hazarika, B.C., Nath, K.C., Thapa, D. and Upadhyaya, T.N. (1983) Hematologic and Blood Chemistry Profiles of the Captive Gayal (Bos gaurus frontalis). Journal of Zoo Animal Medicine, 14, 102-106.
http://dx.doi.org/10.2307/20094652
[41] McDonald, S.E., Paul, S.R. and Bunch, T.D. (1981) Physiologic and Hematologic Values in Nelson Desert Bighorn Sheep. Journal of Wildlife Disease, 17, 131-134.
http://dx.doi.org/10.7589/0090-3558-17.1.131
[42] Pell, J.M. and Bergman, E.N. (1983) Cerebral Metabolism of Amino Acids and Glucose in Fed and Fasted Sheep. American Journal of Physiology, 244, E282-E289.
[43] Pelligrino, D.A., Miletich, D.J. and Albrecht, R.F. (1987) Time Course of Radiolabeled 2-Deoxy-D-Glucose 6- Phosphate Turnover in Cerebral Cortex of Goats. American Journal of Physiology, 252, R276-R283.
[44] Schwalm, J.W. and Schultz, L.H. (1976) Blood and Liver Metabolites in Fed and Fasted Diabetic Goats. Journal of Dairy Science, 59, 262-269.
http://dx.doi.org/10.3168/jds.S0022-0302(76)84193-8
[45] Asadi, F., Shahriari, A., Asadian, P., Pourkabir, M., Sabzikar, A. and Ojaghee, R. (2009) Serum Lipid, Glucose, Free Fatty Acids and Liver Triglyceride in Sub-Adult and Adult Camels (Camelus dromedarius). Revue de Médecine Vétér- inaire, 160, 552-556.
[46] Zinkl, J.G., Mae, D., Guzman Merida, P., Farver, T.B. and Humble, J.A. (1990) Reference Ranges and the In?uence of Age and Sex on Hematologic and Serum Biochemical Values in Donkeys (Equus asinus). American Journal of Veterinary Research, 51, 408-413.
[47] Caldin, M., Furlanello, T., Solano-Gallego, L., De Lorenzi, D., Carli, E., Tasca, S. and Lubas, G. (2005) Reference Ranges for Haematology, Biochemical Pro?le and Electrophoresis in a Single Herd of Ragusana Donkeys from Sicily (Italy). Comparative Clinical Pathology, 14, 5-12.
http://dx.doi.org/10.1007/s00580-005-0544-8
[48] Tesfaye, T., Mamo, G., Endebu, B. and Abayneh, T. (2012) Comparative Serum Biochemical Profiles of Three Types of Donkeys in Ethiopia. Comparative Clinical Pathology, 24, 1-8.
[49] Prasad, K. (2008) Serum Biochemical Changes in Rabbits on a Regular Diet with and without Flax Lignan Complex Following a High-Cholesterol Diet. International Journal of Angiology, 17, 27-32.
http://dx.doi.org/10.1055/s-0031-1278276
[50] Park W., Kim J., Kim, H.J., Choi, J., Park, J.W., Cho, H.W., Kim, B.W., Park, M.H., Shin, T.S., Cho, S.K., Park, J.K., Kim, H., Hwang, J.Y., Lee, C.K., Lee, H.K., Cho, S. and Cho, B.W. (2014) Investigation of de Novo Unique Differentially Expressed Genes Related to Evolution in Exercise Response during Domestication in Thoroughbred Race Horses. PLoS ONE, 9, e91418.
http://dx.doi.org/10.1371/journal.pone.0091418
[51] Bar-Oz, G., Weissbrod, L. and Tsahar, E. (2014) Cats in Recent Chinese Study on Cat Domestication Are Commensal, Not Domesticated. Proceedings of the National Academy of Sciences of the United States of America, 111, E876.
http://dx.doi.org/10.1073/pnas.1324177111
[52] Hu, Y., Hu, S., Wang, W., Wu, X., Marshall, F.B., Chen, X., Hou, L. and Wang, C. (2014) Earliest Evidence for Com- mensal Processes of Cat Domestication. Proceedings of the National Academy of Sciences of the United States of America, 111, 116-120.
http://dx.doi.org/10.1073/pnas.1311439110
[53] Seal, U.S. and Mech, L.D. (1983) Blood Indicators of Seasonal Metabolic Patterns in Captive Adult Gray Wolves. Journal of Wildlife Management, 47, 704-715.
http://dx.doi.org/10.2307/3808606
[54] Borchard, R.E., Vaughan, H.W., Gallagher, L.V. and Schmidt, S.L. (1982) Biochemical Constituents in Domestic and Wild Horses I. Semen Proteins, Electrolytes and Metabolites. Journal of Equine Veterinary Science, 2, 119-126.
http://dx.doi.org/10.1016/S0737-0806(82)80004-X
[55] Seal, U.S., Siniff, D.B., Tester, J.R. and Williams, T.D. (1985) Chemical Immobilization and Blood Analysis of Feral Horses (Equus caballus). Journal of Wildlife Disease, 21, 411-416.
http://dx.doi.org/10.7589/0090-3558-21.4.411
[56] Freudenberger, D.O. and Nolan, J.V. (1993) Glucose Metabolism in a Kangaroo (Macropus robustus erubescens) and a Similar Size Eutherian Herbivore, the Feral Goat. Comparative Biochemistry and Physiology, 106, 295-298.
http://dx.doi.org/10.1016/0300-9629(93)90515-6
[57] Davis, T.P., Yousef, M.K., El-Nouty, F.D. and Johnson, H.D. (1978) Hormonal, Hematologic and Other Biochemical Constituents in the Burro Equus asinus. Journal of Equine Medicine and Surgery, 2, 389-392.
[58] Mayer, J.J. and Lehr Brisbin Jr., I. (1991) Wild Pigs of the United States: Their History, Morphology and Current Status. University of Georgia Press, Athens.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.