Microstructure Evolution of W-Cu Alloy Wire


Microstructure of W-Cu alloy wire before and after hot-swaging was studied in this paper. Results show that a homogeneous microstructure of the W-Cu alloy wire was formed after hot-swaging treatment, and the tungsten particles were embedded in copper phases to form a networking structure; the W-Cu alloy wire has a microstructure of body-centered-cubic tungsten particles and face-centered-cubic copper phase, and did not change after hot-swaging. The intermediate phases have not been found during the process, but the size of the tungsten particles in the copper matrix becomes smaller. After hot-swaging, the treated W-Cu alloy wire has a relative density of 105.1%, and a conductivity of 47.2% IACS, the tensile and bending strength can be as large as 644 and 1600 MPa, respectively.

Share and Cite:

F. Shao, W. Chen, H. Zhang and B. Ding, "Microstructure Evolution of W-Cu Alloy Wire," Materials Sciences and Applications, Vol. 3 No. 3, 2012, pp. 157-162. doi: 10.4236/msa.2012.33024.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. G. Chen, M. Z. Chen and L. Q. Qian, “Effect of Doping on Electrical Arc Characteristic of W-Cu Electrical Contact Materials,” The Chinese Journal of Nonferrous Metals, Vol. 19, No. 11, 2009, pp. 2029-2036.
[2] M. Ardestani, H. Arabi, H. R. Rezaie and H. Razavizadeh, “Synthesis and Densification of W-30 wt%Cu Composite Powders Using Ammonium Meta Tungstate and Copper nitrate as Precursors,” International Journal of Refractory Metals and Hard Materials, Vol. 27, No. 4, 2009, pp. 796-800. doi:10.1016/j.ijrmhm.2009.01.001
[3] S. S. Ryu, Y. D. Kim and I. H. Moon, “Dilatometric Analysis on the Sintering Behavior of Nanocrystalline W-Cu Prepared by Mechanical Alloying,” Journal of Alloys and Compounds, Vol. 335, No. 1-2, 2002, pp. 233-240. doi:10.1016/S0925-8388(01)01805-9
[4] L. Li, Y. S. Wong, J. Y. H. Fuh and L. Li, “ Effect of TiC in Copper-Tungsten Electrodes on EDM Performance,” Journal of Materials Processing Technology, Vol. 113, No. 1-3, 2001, pp. 563-567. doi:10.1016/S0924-0136(01)00622-7
[5] W. G. Chen, Z. Y. Kang, H. F. Shen and B. J. Ding, “Arc Erosion Behavior of a Nanocomposite W-Cu Electrical Contact Material,” Rare Metals, Vol. 25, No. 1, 2006, pp. 37-42. doi:10.1016/S1001-0521(06)60011-9
[6] Z. L. Wang, X. J. Li, J. Q. Zhu, F. Mo, C. F. Zhao and L. H. Wang, “Dynamic Consolidation of W-Cu Nanocomposites from W-CuO Powder Mixture,” Materials Science and Engineering, Vol. 527, No. 21-22, 2010, pp. 6098-6101. doi:10.1016/j.msea.2010.05.077
[7] Y. J .Lee, B. H. Lee, G. S. Kim, D. G. Kim, D. S. Kim and Y. D. Kim, “Evaluation of Conductivity in W-Cu Composites through the Estimation of Topological Microstructures,” Materials Letters, Vol. 60, No. 16, 2006, pp. 2000-2003. doi:10.1016/j.matlet.2005.12.113
[8] S. P. Wen, R. L. Zong, F. Zeng, Y. Gao and F. Pan, “Evaluating Modulus and Hardness Enhancement in Evaporated Cu/W Multilayers,” Acta Materialia, Vol. 55, No. 1, 2007, pp. 345-351. doi:10.1016/j.actamat.2006.07.043
[9] X. H. Yang, S. H. Liang, X. H. Wang, P. Xiao and Z. K. Fan, “Effect of WC and CeO2 on Microstructure and Properties of W-Cu Electrical Contact Material,” International Journal of Refractory Metals and Hard Materials, Vol. 28, No. 2, 2010, pp. 305-311. doi:10.1016/j.ijrmhm.2009.11.009
[10] Z. F. Wang, Z. C. Liu and G. S. Jing. “Hermeticity of W-Cu Composites for Semiconductor Package,” The Chinese Journal of Nonferrous Metals, Vol. 9, No. 2, 1999, pp. 323-326.
[11] D. M. Lu, “Tungsten Copper Materials Used in Vacuum Switches and Electronics,” Powder Metallurgy Industry, Vol. 8, No. 6, 1998, pp. 32-35.
[12] W. P. Zhou, D. M. Lv, A. Q. Tang and X. Y. Ling. “Study of Manufacturing Process of WCu Electrode Materials for Electric Spark Machining,” The Chinese Journal of Materials for Mechanical Engineering, Vol. 20, No. 2, 1996, pp. 30-32.
[13] R. G. Zhang, W. Lin, K. Lawrence and C. P. Wong, “Highly Reliable, Low Cost, Isotropic Ally Conductive Adhesives Filled with Ag-Coated Cu Flakes for Electronic Packaging Applications,” International Journal of Adhesion and Adhesives, Vol. 30, No. 6, 2010, pp.403-407. doi:10.1016/j.ijadhadh.2010.01.004
[14] Q. X. Zhang, Y. Gao, W. M. Jia and J. S. Chen, “Study of Mechanically Alloyed Cuw Shaped Charge Liner Materials,” Ordnance Material Science and Engineering, Vol. 23, No. 3, 2000, pp. 44-50.
[15] D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim, “Hydrogen-Reduction Behavior and Micro Structural Characteristics of WO3-CuO Powder Mixtures with Various Milling Time,” Journal of Alloys and Compounds, Vol. 354, No. 1-2, 2003, pp. 239-242. doi:10.1016/S0925-8388(03)00007-0
[16] Y. Hiraoka, H. Hanado and T. Inoue, “Deformation Behavior at Room Temperature of W-80 vol%Cu Composite,” International Journal of Refractory Metals and Hard Materials, Vol. 22, No. 2-3, 2004, pp. 87-93. doi:10.1016/j.ijrmhm.2004.01.002
[17] Y. D. Kim, N. L. Oh, S. T. Oh, I. H. Moon, “Thermal Conductivity of W-Cu Composites at Various Temperatures,” Materials Letters, Vol. 51, No. 5, 2001, pp. 420-424. doi:10.1016/S0167-577X(01)00330-5
[18] G. G. Lee, G. H. Ha and B. K. Kim, “Synthesis of High Density Ultrafine W/Cu Composite Alloy by Methanol-Thermo Chemical Process,” Powder Metal, Vol. 43, No. 1, 2000, pp. 79-82.
[19] S. J. Lim, H. J. Choi and C. H. Lee, “Forming Characteristics of Tubular Product through the Hot-Swaging Process,” Journal of Materials Processing Technology, Vol. 209, No. 1, 2009, pp. 283-288. doi:10.1016/j.jmatprotec.2007.08.086
[20] H. K. Moon, M. C. Lee and M. S. Joun, “An Approximate Efficient Finite Element Approach to Simulating a Rotary Forming Process and Its Application to a Wheel-Bearing Assembly,” Finite Elements in Analysis and Design, Vol. 44, No. 1-2, 2007, pp. 17-23. doi:10.1016/j.finel.2007.08.003
[21] J. S. Lee and T. H. Kim, “Densification and Microstructure of the Nanocomposite W-Cu Powders,” Nanostructured Materials, Vol. 6, No. 5-8, 1995, pp. 691-694. doi:10.1016/0965-9773(95)00152-2
[22] J. C. Kim and I. H. Moon, “Sintering of Nanostructured W-Cu Alloys Prepared by Mechanical Alloying,” Nanostructured Materials, Vol. 10, No. 2, 1998, pp. 283-290. doi:10.1016/S0965-9773(98)00065-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.