Antioxidant Capacity in Vanilla Extracts Obtained by Applying Focused Microwaves


ORAC method and a continuous flow injection method based on Folin-Ciocalteau reaction (FI-FC) were used for determining the antioxidant activity in extracts obtained by using focused microwaves. Analysis of the antioxidant capacity (AC) of the main compounds of vanilla (vanillin, p-hydroxybenzaldehyde, p-hydroxybenzoic acid and vanillic acid) was also carried out. Vanilla extracts obtained by using focused microwaves had a higher AC (between 72% and 117%) than the obtained by conventional methods. Vanillin had a linear correlation with the antioxidant capacity of the extracts and it is the most influential compound in the antioxidant power. The AC calculated by the ORAC method and the FI-FC method had a ratio 2:1 because of different kinetics and reaction mechanisms of the antioxidants with the reagents, so it is necessary more than one method to establish the antioxidant power in food. On base on the results of the present study microwaves energy can be used to obtain vanilla extracts to improve the AC of them.

Share and Cite:

A. Rojas-López and M. Cañizares-Macías, "Antioxidant Capacity in Vanilla Extracts Obtained by Applying Focused Microwaves," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 244-253. doi: 10.4236/fns.2013.48A030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] E. Hágsater, M. A. Soto-Arenas, G. A. Salazar-Chávez, R. Jiménez Machorro, M. A. López-Rosas and R. L. Dress ler, “Las Orquídeas de México,” Instituto Chinoín A.C., Redacta S.A. de C.V., Mexico City, 2005.
[2] S. R. Rao and G. A. Ravishankar, “Vanilla Flavour: Produc tion by Conventional and Biotechnological Routes,” Jour nal of the Science of Food and Agriculture, Vol. 80, No. 3, 2000, pp. 289-304. doi:10.1002/1097-0010(200002)80:3<289::AID-JSFA543>3.0.CO;2-2
[3] A. K. Sinha, U. K. Sharma and N. Sharma, “A Compre hensive Review on Vanilla Flavor: Extraction, Isolation and Quantification of Vanillin and Others Constituents,” International Journal Food Science and Nutrition, Vol. 59, No. 4, 2008, pp. 299-326. doi:10.1080/09687630701539350
[4] M. J. Dignum, J. Kerler and R. Verpoorte, “Vanilla Pro duction: Technological, Chemical and Biosynthetic As pects,” Food Reviews International, Vol. 17, No. 2, 2001, pp. 199-219. doi:10.1081/FRI-100000269
[5] A. K. Sinha, S. C. Verma and N. Sharma, “Development and Validation of an RP-HPLC Method for Quantitative Determination of Vanillin and Related Phenolic Com pounds in Vanilla Planifolia,” Journal of Separation Sci ence, Vol. 30, No. 1, 2007, pp. 15-20. doi:10.1002/jssc.200600193
[6] E. Odoux, J. Escoute and J. Verdell, “The Relation be tween Glucovanillin, β-D-Lucosidase Activity and Cellu lar Compartmentation during the Senescence, Freezing and Traditional Curing of Vanilla Beans,” Annals Applied Biology, Vol. 149, No. 1, 2006, pp. 43-52. doi:10.1111/j.1744-7348.2006.00071.x
[7] C. Valdez-Flores and M. P. Canizares-Macías, “On-Line Dilution and Detection of Vanillin in Vanilla Extracts Ob tained by Ultrasound,” Food Chemistry, Vol. 105, No. 3, 2007, pp. 1201-1208. doi:10.1016/j.foodchem.2007.02.028
[8] S. P. Wong, L. P. Leong and J. Koh, “Antioxidant Activi ties of Aqueous Extracts of Selected Plants,” Food Chem istry, Vol. 99, No. 4, 2006, pp. 775-783. doi:10.1016/j.foodchem.2005.07.058
[9] N. V. Yanishlieva, E. Marinova and J. Pokorny, “Natural Antioxidant from Herbs and Spices,” European Journal of Lipid Science and Technology, Vol. 108, No. 9, 2006, pp. 776-793. doi:10.1002/ejlt.200600127
[10] Pastene, M. Gómez, H. Speisky and L. Nunez-Vergara, “Un Sistema Para la Detección de Antioxidantes Volátiles Comúnmente Emitidos Desde Especias y Hierbas Medi cinales,” Quimi Nova, Vol. 32, No. 2, 2009, pp. 482-487. doi:10.1590/S0100-40422009000200035
[11] J. C. Espín, M. T. García-Conesa and F. A. Tomás-Barbe rán, “Nutraceuticals: Facts and Fiction,” Phytochemical, Vol. 68, No. 22, 2007, pp. 2986-3008. doi:10.1016/j.phytochem.2007.09.014
[12] M. E. Drago-Serrano, M. López-López and T. R. Sainz Espunes, “Componentes Bioactivos de Alimentos Fun cionales de Origen Vegetal,” Revista Mexicana de Cien cias Farmacéuticas, Vol. 37, No. 1, 2006, pp. 58-68.
[13] B. Halliwell and J. M. Gutteridge, “Free Radicals in Bi ology and Medicine,” 3rd Edition, Oxford University Press, Oxford, 1999.
[14] E. N. Frankel and A. S. Meyer, “The Problems of Using One-Dimensional Methods to Evaluate Multifunctional Food and Biological Antioxidants,” Journal of Science Food Agriculture, Vol. 80, No. 13, 2000, pp. 1925-1941. doi:10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4
[15] R. H. Bisby, R. Brooke and S. Navaratnam, “Effect of Antioxidant Oxidation Potential in the Oxygen Radical Absorption Capacity (ORAC) Assay,” Food Chemistry, Vol. 108, No. 3, 2008, pp. 1002-1007. doi:10.1016/j.foodchem.2007.12.012
[16] B. Ou, M. Hampsch-Woodill and R. L. Prior, “Develop ment and Validation of an Improved Oxygen Radical Ab sorbance Capacity Using Fluorescein as the Fluorescent Probe,” Journal of Agriculture and Food Chemistry, Vol. 49, No. 10, 2001, pp. 4619-4626. doi:10.1021/jf010586o
[17] A. Zulueta, M. J. Esteve and A. Frígola, “ORAC and TEAC Assays Comparison to Measure the Antioxidant Capacity of Food Products,” Food Chemistry, Vol. 114, No. 1, 2009, pp. 310-316. doi:10.1016/j.foodchem.2008.09.033
[18] M. Celeste, C. Tomás, A. Cladera, J. M. Estela and V. Cer dà, “Enhanced Automatic Flow Injection Determination of the Total Polyphenol Number of Wines Using the Fo lin-Ciocalteau Reagent,” Analytica Chimica Acta, Vol. 269, No. 1, 1992, pp. 21-28. doi:10.1016/0003-2670(92)85128-S
[19] V. L. Singleton, R. Orthofer and R. M. Lamuela-Raven tós, “Analysis of Total Phenols and Other Oxidation Sub strates and Antioxidants by Means of Folin-Ciocalteu Re agent,” Methods in Enzymology, Vol. 299, No. 14, 1999, pp. 152-178. doi:10.1016/S0076-6879(99)99017-1
[20] D. Sterbova, D. Matejícek, J. Vlcek and V. Kubán, “Com bined Microwave-Assisted Isolation and Solid-Phase Pu rification Procedures Prior to Chromatographic Determi nation of Phenolic Compounds in Plant Materials,” Ana lytica Chimica Acta, Vol. 513, No. 2, 2004, pp. 435-444. doi:10.1016/j.aca.2004.03.031
[21] Y. Zuo, L. Zhang, J. Wu, J. W. Fritz, S. Medeiros and C. Rego, “Ultrasonic Extraction and Capillary Gas Chroma tography Determination of Nicotine in Pharmaceutical Formulations,” Analytica Chimica Acta, Vol. 526, No. 1, 2004, pp. 35-39. doi:10.1016/j.aca.2004.09.035
[22] J. L. Luque-García and M. D. Luque de Castro, “Where Is Microwave-Based Analytical Equipment for Solid Simple Pre-Treatment Going?” Trends Analytical Chemistry, Vol. 22, No. 2, 2003, pp. 90-98. doi:10.1016/S0165-9936(03)00202-4
[23] J. L. Luque-García, J. Velasco, M. C. Dobarganes and M. D. Luque de Castro, “Fast Quality Monitoring of Oil from Prefried and Fried Foods by Focused Microwave-Assi sted Soxhlet Extraction,” Food Chemistry, Vol. 76, No. 2, 2002, pp. 241-248. doi:10.1016/S0308-8146(01)00293-X
[24] E. E. Stashenko, B. E. Jaramillo and J. R. Martínez, “Com parison of Different Extraction Methods for the Analysis of Volatile Secondary Metabolites of Lippia Alba (Mill.) N. E. Brown, Grown in Colombia and Evaluation of Its in Vitro Antioxidant Activity,” Journal of Chromatography A, Vol. 1025, No. 1, 2004, pp. 93-103. doi:10.1016/j.chroma.2003.10.058
[25] K. J. Lamble and S. J. Hill, “Microwave Digestion Proce dures for Environmental Matrices,” Analyst, Vol. 123, No. 7, 1998, pp. 103R-133R. doi:10.1039/a800776d
[26] S. Vadahanambi, S. J. H. Jung and I. K. Oh, “Microwave Syntheses of Graphene and Graphene Decorated with Me tal Nanoparticles,” Carbon, Vol. 49, No. 13, 2011, pp. 4449-4457. doi:10.1016/j.carbon.2011.06.038
[27] S. Mishra, G. Sen, G. U. Rani and S. Sinha, “Microwave Assisted Synthesis of Polyacrylamide Grafted Agar (Ag g-PAM) and Its Application as Flocculant for Wastewater Treatment,” International Journal of Biological Macro molecules, Vol. 49, No. 4, 2011, pp. 591-598. doi:10.1016/j.ijbiomac.2011.06.015
[28] S. V. Jadhav, E. Suresh and H. C. Bajaj, “Microwave-As sisted Solvent-Free Synthesis of α,α’-Bis(substituted ben zylidine)cycloalkanones Catalyzed by SO4 2-/ZrO2 and B2O3/ZrO2,” Green Chemistry Letters Review, Vol. 4, No. 3, 2011, pp. 249-256. doi:10.1080/17518253.2010.546371
[29] A. Longares-Patrón and M. P. Canizares-Macías, “Focus ed Microwaves-Assisted Extraction and Simultaneous Spectrophotometric Determination of Vanillin and p-Hy droxybenzaldehyde from Vanilla Fragans,” Talanta, Vol. 69, No. 4, 2006, pp. 882-887. doi:10.1016/j.talanta.2005.11.030
[30] Mexican Norm: NMX-FF-074-SCFI-2009, “Productos No Industrializados Para Uso Humano-Vainilla (Vanilla fra grans (Salisbury) Ames Especificaciones y Métodos de Prueba. Non Industrialized Food Products for Human Con sumption-Vanilla (Vanilla fragrans (Salisbury) Ames). Specifications and Test Methods,” Secretaría de Comer cio y Finanzas, Mexico City, 2009.
[31] M. P. Canizares, M. T. Tena and M. D. Luque de Castro, “On Line Coupling of a Liquid-Liquid Extraction Flow Reversal System to a Spectrophotometric Flow-Through Sensor for the Determination of Polyphenols in Olive Oil,” Analytica Chimica Acta, Vol. 323, No. 1-3, 1996, pp. 55-62.
[32] T. Ercetin, F. S. Senol, I. Erdogan, I. Orhan and G. Toker, “Comparative Assessment of Antioxidant and Cholineste rase Inhibitory Properties of the Marigold Extracts from Calendula arvensis L. and Calendula officinalis L.,” In dustrial Crops Products, Vol. 36, No. 1, 2012, pp. 203-208.
[33] American Society for Testing and Material, “Annual Book of ASTM,” ASTM D 1348-94, Vol. 6.03, 2003, pp. 287-292.
[34] L. Yu, J. Perret, B. Davy, J. Wilson and C. L. Melby, “Free Radical Scavenging Properties of Wheat Extracts,” Jour nal of Food Science, Vol. 67, No. 22, 2002, pp. 2600-2603. doi:10.1111/j.1365-2621.2002.tb08784.x
[35] E. A. Abdelilah, K. Hajar and H. Abdellatif, “Phenolic Profile and Antioxidant Activities of Olive Mill Waste water,” Food Chemistry, Vol. 132, No. 1, 2012, pp. 406-412. doi:10.1016/j.foodchem.2011.11.013
[36] M. F. Barroso, C. Delerue-Matos and M. B. P. P. Oliveira, “Electrochemical Evaluation of Total Antioxidant Capa city of Beverages Using a Purine-Biosensor,” Food Che mistry, Vol. 132, No. 2, 2012, pp. 1055-1062. doi:10.1016/j.foodchem.2011.10.072
[37] S. Labbozzetta, L. Valvo, P. Bertochi, S. Alimunti, M. C. Gaudiano and L. Manna, “Focused Microwave-Assisted Extraction and LC Determination of Ketoprofen in the Presence of Preservatives in a Pharmaceutical Cream Formulation,” Chromatographia, Vol. 69, No. 3, 2009, pp. 365-368. doi:10.1365/s10337-008-0892-z
[38] A. Martín-Calero, V. Pino, J. H. Ayala, V. González and A. M. Alfonso, “Ionic Liquids as Mobile Phase Additives in High-Performance Liquid Chromatography with Elec trochemical Detection: Application to the Determination of Heterocyclic Aromatic Amines in Meat-Based Infant Foods,” Talanta, Vol. 79, No. 3, 2009, pp. 590-597. doi:10.1016/j.talanta.2009.04.032
[39] M. Varga, J. Dobor, A. Helenkár, L. Jurecska, J. Yao and G. Záray, “Investigation of Acidic Pharmaceuticals in River Water and Sediment by Microwave-Assisted Ex traction and Gas Chromatography—Mass Spectrometry,” Microchemica Journal, Vol. 95, No. 2, 2010, pp. 353-358. doi:10.1016/j.microc.2010.02.010
[40] M. P. Canizares-Macías, J. A. García-Mesa and M. D. Luque de Castro, “Determination of Oxidative Stability on Olive Oil Using Focused-Microwave Energy to Ac celerate the Oxidation Process,” Analytical and Bioana lytical Chemistry, Vol. 378, No. 2, 2004, pp. 479-483. doi:10.1007/s00216-003-2280-8
[41] D. P. Singh, J. Beloy, J. K. McInerney and L. Day, “Im pact of Boron, Calcium and Genetic Factors on Vitamin C, Carotenoids, Phenolic Acids, Anthocyanins and Anti oxidant Capacity of Carrots (Daucus carota),” Food Che mistry, Vol. 132, No. 3, 2012, pp. 1161-1170. doi:10.1016/j.foodchem.2011.11.045
[42] S. Buratii, N. Pelligrini, O. Brenna and S. Mannino, “Rapid Electrochemical Method for the Evaluation of the Antioxidant Power of Some Lipophilic Food Extracts,” Journal of Agriculture and Food Chemistry, Vol. 49, No. 11, 2001, pp. 5136-5141. doi:10.1021/jf010731y
[43] D. Lettieri-Barbato, D. Villano, B. Beheydt, F. Guadagni, I. Trogh and M. Serafini, “Effect of Ingestion of Dark Chocolates with Similar Lipid Composition and Different Cocoa Content on Antioxidant and Lipid Status in Heal thy Humans,” Food Chemistry, Vol. 132, No. 3, 2012, pp. 1305-1310. doi:10.1016/j.foodchem.2011.11.109
[44] S. Buratti, S. Benedetti and M. S. Cosio, “Evaluation of the Antioxidant Power of Honey, Propolis and Royal Jelly by Amperometric Flow Injection Analysis,” Talanta, Vol. 71, No. 3, 2007, pp. 1387-1392. doi:10.1016/j.talanta.2006.07.006
[45] C. A. Rice-Evans, N. J. Miller and G. Paganga, “Structure Antioxidant Activity Relationships of Flavonoids and Phenolic Acids,” Free Radical Biology and Medicine, Vol. 20, No. 7, 1996, pp. 933-956. doi:10.1016/0891-5849(95)02227-9
[46] A. Tai, T. Sawano, S. F. Yasama and H. Ito, “Evaluation of Antioxidant Activity of Vanillin by Using Multiple Antioxidant Assays,” Biochemica and Biophysica Acta, Vol. 1810, No. 2, 2011, pp. 170-177. doi:10.1016/j.bbagen.2010.11.004

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.