Biophysical Characterization of Genistein in Its Natural Carrier Human Hemoglobin Using Spectroscopic and Computational Approaches

DOI: 10.4236/fns.2013.48A011   PDF   HTML     3,829 Downloads   5,759 Views   Citations

Abstract

Steady state and time resolved fluorescence spectroscopy, combined with molecular dynamics simulation, have been used to explore the interactions of a therapeutically important bioflavonoid, genistein, with normal human hemoglobin (HbA). Binding constants estimated from the fluorescence studies were K = (3.5 ± 0.32) ×104M-1 for genistein. Specific interactions with HbA were confirmed from flavonoid-induced fluorescence quenching of the tryptophan in the protein HbA. The mechanism of this quenching involves both static and dynamic components as indicated by: (a) increase in the values of Stern-Volmer quenching constants with temperatures, (b) / is slightly > 1 (where and are the unquenched and quenched tryptophan fluorescence lifetimes (averaged) respectively). Molecular docking and dynamic simulations reveal that genistein binds between the subunits of HbA, ~18 ? away from the closest heme group of chain α1, emphasizing the fact that the drug does not interfere with oxygen binding site of HbA.

Share and Cite:

B. Pahari, S. Chakraborty, B. Sengupta, S. Chaudhuri, W. Martin, J. Taylor, J. Henley, D. Davis, P. Biswas, A. Sharma and P. Sengupta, "Biophysical Characterization of Genistein in Its Natural Carrier Human Hemoglobin Using Spectroscopic and Computational Approaches," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 83-92. doi: 10.4236/fns.2013.48A011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] St. Rusznyák and A. Szent-Gyorgyi, “Vitamin P: Flavonols as Vitamins,” Nature, Vol. 138, No. 3479, 1936, p. 27.
[2] S. Chaudhuri, A. Banerjee, K. Basu, B. Sengupta and P. K. Sengupta, “Interaction of Flavonoids with Red Blood Cell Membrane Lipids and Proteins: Antioxidant and Antihemolytic Effects,” International Journal of Biological Macromolecule, Vol. 41, No. 1, 2007, pp. 42-48. doi:10.1016/j.ijbiomac.2006.12.003
[3] B. Sengupta, T. Uematsu, P. Jacobsson and J. Swenson, “Exploring the Antioxidant Property of Bioflavonoid Quercetin in Preventing DNA Glycation: A Calorimetric and Spectroscopic Study,” Biochemical and Biophysical Research Communications, Vol. 339, No. 1, 2006, pp. 355361. doi:10.1016/j.bbrc.2005.11.019
[4] B. Sengupta and J. Swenson, “Properties of Normal and Glycated Human Hemoglobin in Presence and Absence of Antioxidant,” Biochemical and Biophysical Research Communications, Vol. 334, No. 3, 2005, pp. 954-959. doi:10.1016/j.bbrc.2005.06.181
[5] S. Chakraborty, S. Chaudhuri, B. Pahari, J. Taylor, P. K. Sengupta and B. Sengupta, “A Critical Study on the Interactions of Hesperitin with Human Hemoglobin: Fluorescence Spectroscopic and Molecular Modeling Approach,” Journal of Luminescence, Vol. 132, No. 6, 2012, pp. 15221528. doi:10.1016/j.jlumin.2012.01.021
[6] G. Rusak, H. O. Gutzeit and J. L. Müller, “Structurally Related Flavonoids with Antioxidative Properties Differentially Affect Cell Cycle Progression and Apoptosis of Human Acuteleukemia Cells,” Nutrition Research, Vol. 25, No. 2, 2005, pp. 143-155. doi:10.1016/j.nutres.2004.12.003
[7] A. Constantinou, K. Kiguchi and E. Huberman, “Induction of Differentiation and DNA Strand Breakage in Human HL-60 and K-562 Leukemia Cells by Genistein,” Cancer Research, Vol. 50, No. 9, 1990, pp. 2618-2624.
[8] D. A. Frank and A. C. Sartorelli, “Alterations in Tyrosine Phosphorylation during the Granulocytic Maturation of HL-60 Leukemia Cells,” Cancer Research, Vol. 48, No. 1, 1988, pp. 52-58.
[9] T. Akiyama, J. Ishida, S. Nakagawa, H. Ogawara, S.-I. Watanabe, N. Itoh, M. Shibuya and Y. Fukami, “Genistein, a Specific Inhibitor of Tyrosine-Specific Protein Kinases,” Journal of Biological Chemistry, Vol. 262, No. 12. 1987, pp. 5592-5595.
[10] K. Kiguchi, A. I. Constantinou and E. Huberman, “Genistein-Induced Cell Differentiation and Protein-Linked DNA Strand Breakage in Human Melanoma Cells,” Cancer Communications, Vol. 2, No. 8, 1990, pp. 271-277.
[11] A. Bolli, M. Marino, G. Rimbach, G. Fanali, M. Fasano and P. Ascenzi, “Flavonoid Binding to Human Serum Albumin,” Biochemical and Biophysical Research Communications, Vol. 398, No. 3, 2010, pp. 444-449. doi:10.1016/j.bbrc.2010.06.096
[12] F. K. Alanzi, G. E.-D. I. Harisa, A. Maqboul, M. A. Hamid, S. H. Neau and I. A. Alsarra, “Biochemically Altered Human Erythrocytes as a Carrier for Targeted Delivery of Primaquine: An in Vitro Study,” Archives of Pharmacal Research, Vol. 34, No. 4, 2011, pp. 563-571. doi:10.1007/s12272-011-0406-7
[13] M. Hamidi, H. Tajerzadeh, A. R. Dehpour, M. R. Rouini and S. Ejtemaee-Mehr, “In Vitro Characterization of Intact Human Erythrocytes Loaded by Enalaprilat,” Drug Delivery, Vol. 8, No. 4, 2001, pp. 223-230. doi:10.1080/107175401317245903
[14] M. L. Doyle, J. M. Holt and G. K. Ackers, “Effects of NaCl on the Linkages between O2 Binding and Subunit Assembly in Human Hemoglobin: Titration of the Quaternary Enhancement Effect,” Biophysical Chemistry, Vol. 64, No. 1-3, 1997, pp. 271-287. doi:10.1016/S0301-4622(96)02235-1
[15] X. Yang, J. Chou, G. Sun, H. Yang and T. Lu, “Synchronous Fluorescence Spectra of Hemoglobin: A Study of Aggregation States in Aqueous Solutions,” Microchemical Journal, Vol. 60, No. 3, 1998, pp. 210-216. doi:10.1006/mchj.1998.1648
[16] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 3rd Edition, Springer-Verlag, New York, 2006.
[17] W. B. Gratzer, “Medical Research Council Labs,” Holly Hill, London.
[18] D. Sahoo, P. Bhattacharya and S. Chakravorti, “Quest for Mode of Binding of 2-(4-(dimethylamino) Styryl)-1-Methylpyridinium Iodide with Calf Thymus DNA,” Journal of Physical Chemistry B, Vol. 114, No. 5, 2010, pp. 20442050. doi:10.1021/jp910766q
[19] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew and A. J. Olson, “Automated Docking Using a Lamarkian Genetic Algorithm and an Empirical Binding Free Energy Function,” Journal of Computational Chemistry, Vol. 19, No. 14, 1998, pp. 1639-1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
[20] Hyperchem, Hypercube, Inc., 2002.
[21] D. V. D. Spoel, B. Hess, G. Groenhof, A. E. Mark and H. J. Berendsen, “GROMACS: Fast, Flexible, and Free,” Journal of Computational Chemistry, Vol. 26, No. 16, 2005, pp. 1701-1718. doi:10.1002/jcc.20291
[22] E. Lindahl Erik, B. Hess and D. V. D. Spoel, “GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis,” Journal of Molecular Modelling, Vol. 7, No. 8, 2001, pp. 306-317.
[23] W. L. Jorgensen and J. Tirado-Rives, “The OPLS Force Field for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin,” Journal of the American Chemical Society, Vol. 110, No. 6, 1988, pp. 1657-1666. doi:10.1021/ja00214a001
[24] R. Car and M. Parrinello, “Unified Approach for Molecular Dynamics and Density-Functional Theory,” Physical Review Letters, Vol. 55, No. 22, 1985, pp. 2471-2474. doi:10.1103/PhysRevLett.55.2471
[25] P. K. Biswas and V. Gogonea, “A Regularized and Renormalized Electrostatic Coupling Hamiltonian for Hybrid Quantum-Mechanical—Molecular-Mechanical Calculations,” Journal of Chemical Physics, Vol. 123, No. 16, 2005, pp. 164114-164122. doi:10.1063/1.2064907
[26] V. Gogonea, J. M. Shy and P. K. Biswas, “Electronic Structure, Ionization Potential, and Electron Affinity of the Enzyme Cofactor (6R)-5,6,7,8-Tetrahydrobiopterin in the Gas Phase, Solution, and Protein Environments,” Journal of Physical Chemistry B, Vol. 110, No. 45, 2006, pp 2286122871. doi:10.1021/jp061653q
[27] B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, “LINCS: A Linear Constraint Solver for Molecular Simulations,” Journal of Computational Chemistry, Vol. 18, No. 12, 1997, pp. 1463-1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
[28] B. Pahari, B. Sengupta, S. Chakraborty, B. Thomas, D. McGowan and P. K. Sengupta, “Contrasting Binding of Fisetin and Daidzein in γ-Cyclodextrin Nanocavity,” Journal of Photochemistry and Photobiology B: Biology, Vol. 118, No. 1, 2013, pp. 33-41. doi:10.1016/j.jphotobiol.2012.10.010
[29] B. Pahari, S. Chakraborty, S. Chaudhuri, B. Sengupta and P. K. Sengupta, “Binding and Antioxidant Properties of Therapeutically Important Plant Flavonoids in Biomembranes: Insights from Spectroscopic and Quantum Chemical Studies,” Chemistry and Physics of Lipids, Vol. 165, No. 4, 2012, pp. 488-496. doi:10.1016/j.chemphyslip.2011.10.006
[30] B. Sengupta, B. Pahari, L. Blackmon and P. K. Sengupta, “Prospect of Bioflavonoid Fisetin as a Quadruplex DNA Ligand: A Biophysical Approach,” PloS One, Vol. 8, No. 6, 2013, pp. 1-11.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.