Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Pardoux, E. and Peng, S. (1990) Adapted Solution of a Backward Stochastic Differntial Equation. Systems & Control Letters, 14, 55-61. http://dx.doi.org/10.1016/0167-6911(90)90082-6
has been cited by the following article:
TITLE: A New Second Order Numerical Scheme for Solving Forward Backward Stochastic Differential Equations with Jumps
AUTHORS: Hongqiang Zhou, Yang Li, Zhe Wang
KEYWORDS: Numerical Scheme, Error Estimates, Backward Stochastic Differential Equations
JOURNAL NAME: Applied Mathematics, Vol.7 No.12, July 29, 2016
ABSTRACT: In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.
Related Articles:
A Mean-Field Stochastic Maximum Principle for Optimal Control of Forward-Backward Stochastic Differential Equations with Jumps via Malliavin Calculus
Qing Zhou, Yong Ren
DOI: 10.4236/jamp.2018.61014 586 Downloads 1,036 Views Citations
Pub. Date: January 16, 2018
A Solution of Kepler’s Equation
John N. Tokis
DOI: 10.4236/ijaa.2014.44062 6,168 Downloads 8,633 Views Citations
Pub. Date: December 30, 2014
Upwind Finite-Volume Solution of Stochastic Burgers’ Equation
Mohamed A. El-Beltagy, Mohamed I. Wafa, Osama H. Galal
DOI: 10.4236/am.2012.331247 5,118 Downloads 7,736 Views Citations
Pub. Date: November 27, 2012
The Existence and Uniqueness of Random Solution to Itô Stochastic Integral Equation
Hamdin Ahmed Alafif, Caishi Wang
DOI: 10.4236/am.2012.37119 3,580 Downloads 6,133 Views Citations
Pub. Date: June 21, 2012
A Review of Wavelets Solution to Stochastic Heat Equation with Random Inputs
Anthony Y. Aidoo, Matilda Wilson
DOI: 10.4236/am.2015.614196 3,080 Downloads 3,582 Views Citations
Pub. Date: December 23, 2015