[1]
|
Ali, R.M., Hamad, H.A., Hussein, M.M. and Malash, G.F. (2016) Potential of Using Green Adsorbent of Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, Thermodynamic, Mechanism and Economic Analysis. Ecological Engineering, 91, 317-332. https://doi.org/10.1016/j.ecoleng.2016.03.015
|
[2]
|
Wong, S., Ngadi, N., Inuwa, I.M. and Hassan, O. (2018) Recent Advances in Applications of Activated Carbon from Bio-Waste for Wastewater Treatment: A Short Review. Journal of Cleaner Production, 175, 361-375.
https://doi.org/10.1016/j.jclepro.2017.12.059
|
[3]
|
Kyzas, G.Z., Kostoglou, M., Lazaridis, N.K., Lambropoulou, D.A. and Bikiaris, D.N. (2013) Environmental Friendly Technology for the Removal of Pharmaceutical Contaminants from Wastewaters Using Modified Chitosan Adsorbents. Chemical Engineering Journal, 222, 248-258. https://doi.org/10.1016/j.cej.2013.02.048
|
[4]
|
Yin, J., Deng, C., Yu, Z., Wang, X. and Xu, G. (2018) Effective Removal of Lead Ions from Aqueous Solution Using Nano Illite/Smectite Clay: Isotherm, Kinetic and Thermodynamic Modeling of Adsorption. Water, 10, 210.
https://doi.org/10.3390/w10020210
|
[5]
|
Gomez-solís, C., Ballesteros, J.C., Torres-martínez, L.M., Juárez-ramírez, I., Torres, L.A.D., Zarazua-morin, M.E. and Whon, S. (2015) Rapid Synthesis of ZnO Nano-Corncobs from Nital Solution and Its Application in the Photodegradation of Methyl Orange. Journal of Photochemistry & Photobiology A: Chemistry, 298, 49-54. https://doi.org/10.1016/j.jphotochem.2014.10.012
|
[6]
|
Moradi, S., Aberoomand-azar, P. and Raeis-farshid, S. (2016) The Effect of Different Molar Ratios of ZnO on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite. Journal of Saudi Chemical Society, 20, 373-378.
https://doi.org/10.1016/j.jscs.2012.08.002
|
[7]
|
Chiang, Y. and Lin, C. (2013) Photocatalytic Decolorization of Methylene Blue in Aqueous Solutions Using Coupled ZnO/SnO2 Photocatalysts. Powder Technology, 246, 137-143. https://doi.org/10.1016/j.powtec.2013.04.033
|
[8]
|
Yang, G., Yan, Z. and Xiao, T. (2012) Preparation and Characterization of SnO2/ZnO/TiO2 Composite Semiconductor with Enhanced Photocatalytic Activity. Applied Surface Science, 258, 8704-8712.
https://doi.org/10.1016/j.apsusc.2012.05.078
|
[9]
|
Zno, O., Saravanan, R., Gupta, V.K., Narayanan, V. and Stephen, A. (2014) Visible Light Degradation of Textile Effluent Using Novel Catalyst. Journal of the Taiwan Institute of Chemical Engineers, 45, 1910-1917.
https://doi.org/10.1016/j.jtice.2013.12.021
|
[10]
|
Qamar, M.T., Aslam, M., Rehan, Z.A., Soomro, M.T., Basahi, J.M., Ismail, I.M. I., et al. (2017) The Influence of P-Type Mn3O4 Nanostructures on the Photocatalytic Activity of ZnO for the Removal of Bromo and Chlorophenol in Natural Sunlight Exposure. Applied Catalysis B, Environmental, 201, 105-118.
https://doi.org/10.1016/j.apcatb.2016.08.004
|
[11]
|
Vahid Hoseinpour, N.G. (2018) Novel ZnO-MnO2-Cu2O Triple Nanocomposite: Facial Synthesis, Characterization, Antibacterial Activity and Visible Light Photocatalytic Performance for Dyes Degradation: A Comparative Study. Materials Research Express.
|
[12]
|
Chen, C.H., Li, Z.C., Lin, H.N., Wang, G.J., Liao, J.C. and Shasha Lv, W.L. (2016) Enhanced Visible Light Photocatalytic Performance of ZnO Nanowires Integrated with CdS and Ag2S. Dalton Transactions, No. 9.
https://doi.org/10.1039/C5DT04533A
|
[13]
|
Li, J., Liu, Z. and Zhu, Z. (2015) Enhanced Photocatalytic Activity in ZnFe2O4-ZnO-Ag3PO4 Hollow Nanospheres through the Cascadal Electron Transfer with Magnetical Separation. Journal of Alloys and Compounds Journal, 636, 229-233. https://doi.org/10.1016/j.jallcom.2015.02.176
|
[14]
|
Liu, Y., Zhu, G., Chen, J., Xu, H., Shen, X. and Yuan, A. (2013) Co3O4/ZnO Nanocomposites for Gas-Sensing Applications. Applied Surface Science, 265, 379-384.
https://doi.org/10.1016/j.apsusc.2012.11.016
|
[15]
|
Wang, C., Tan, X., Yan, J., Chai, B., Li, J. and Chen, S. (2017) Electrospinning Direct Synthesis of Magnetic ZnFe2O4/ZnO Multi-Porous Nanotubes with Enhanced Photocatalytic Activity. Applied Surface Science, 396, 780-790.
https://doi.org/10.1016/j.apsusc.2016.11.029
|
[16]
|
Li, Y., Li, Y., Yin, Y., Xia, D., Ding, H., Ding, C. and Wu, J. (2018) Facile Synthesis of Highly Efficient ZnO/ZnFe2O4 Photocatalyst Using Earth-Abundant Sphalerite and Its Visible Light Photocatalytic Activity. Applied Catalysis B: Environmental, 226, 324-336. https://doi.org/10.1016/j.apcatb.2017.12.051
|
[17]
|
Davari, N., Farhadian, M., Reza, A., Nazar, S. and Homayoonfal, M. (2017) Degradation of Diphenhydramine by the Photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 Based on Clinoptilolite: Structural and Operational Comparison. Journal of Environmental Chemical Engineering, 5, 5707-5720.
https://doi.org/10.1016/j.jece.2017.10.052
|
[18]
|
Saito, F. (2008) Improvement in Photocatalytic Activity of TiO2 under Visible Irradiation through Addition of N-TiO2. Environmental Science & Technology, 42, 3622-3626. https://doi.org/10.1021/es702932m
|
[19]
|
Zno, N., Qin, H., Li, W., Xia, Y. and He, T. (2011) Photocatalytic Activity of Heterostructures Based on ZnO and N-Doped ZnO. American Chemical Society, 3, 3152-3156.
|
[20]
|
Lin, L., Kavadiya, S., Begum, B., Nie, Y., Raliya, R., Wang, S.T., et al. (2018) ZnO1-x/Carbon Dots Composite Hollow Spheres: Facile Aerosol Synthesis and Superior CO2 Photoreduction under UV, Visible and Near-Infrared Irradiation. Applied Catalysis B: Environmental, 230, 36-48.
https://doi.org/10.1016/j.apcatb.2018.02.018
|
[21]
|
Li, X., Yu, J. and Jaroniec, M. (2016) Hierarchical Photocatalysts. Chemical Society Reviews, 45, 2603-2636. https://doi.org/10.1039/C5CS00838G
|
[22]
|
Sathishkumar, P., Sweena, R., Wu, J.J. and Anandan, S. (2011) Synthesis of CuO-ZnO Nanophotocatalyst for Visible Light Assisted Degradation of a Textile Dye in Aqueous Solution. Chemical Engineering Journal, 171, 136-140.
https://doi.org/10.1016/j.cej.2011.03.074
|
[23]
|
Habibi, M.H. and Karimi, B. (2014) Application of Impregnation Combustion Method for Fabrication of Nanostructure CuO/ZnO Composite Oxide: XRD, FESEM, DRS and FTIR Study. Journal of Industrial and Engineering Chemistry, 20, 1566-1570. https://doi.org/10.1016/j.jiec.2013.07.048
|
[24]
|
Liao, W., Zheng, T., Wang, P., Tu, S. and Pan, W. (2010) Efficient Microwave-Assisted Photocatalytic Degradation of Endocrine Disruptor Dimethyl Phthalate over Composite Catalyst ZrOx/ZnO. Journal of Environmental Sciences, 22, 1800-1806. https://doi.org/10.1016/S1001-0742(09)60322-3
|
[25]
|
Ciciliati, M.A., Silva, M.F., Fernandes, D.M., De Melo, M.A.C., Adelina, A., Hechenleitner, W. and Pineda, E.A.G. (2015) Fe-Doped ZnO Nanoparticles: Synthesis by a Modified Sol-Gel Method and Characterization. Materials Letters, 159, 84-86.
https://doi.org/10.1016/j.matlet.2015.06.023
|
[26]
|
Margan, P. and Haghighi, M. (2018) Sono-Coprecipitation Synthesis and Physicochemical Characterization of CdO-ZnO Nanophotocatalyst for Removal of Acid Orange 7 from Wastewater. Ultrasonics Sonochemistry, 40, 323-332.
https://doi.org/10.1016/j.ultsonch.2017.07.003
|
[27]
|
Zare, M., Namratha, K., Thakur, M.S., Yallappa, S. and Byrappa, K. (2018) Comprehensive Biological Assessment and Photocatalytic Activity of Surfactant Assisted Solvothermal Synthesis of ZnO Nanogranules. Materials Chemistry and Physics, 215, 148-156. https://doi.org/10.1016/j.matchemphys.2018.04.109
|
[28]
|
Yang, H., Zhang, Q., Chen, Y., Huang, Y., Yang, F. and Lu, Z. (2018) Ultrasonic-Microwave Synthesis of ZnO/BiOBr Functionalized Cotton Fabrics with Antibacterial and Photocatalytic Properties. Carbohydrate Polymers, 201, 162-171.
https://doi.org/10.1016/j.carbpol.2018.08.068
|
[29]
|
Osman, A. and Akbulut, H. (2015) A Facile Synthesis of Zinc Oxide/Multiwalled Carbon Nanotube Nanocomposite Lithium Ion Battery Anodes by Sol-Gel Method. Journal of Power Sources, 295, 235-245.
https://doi.org/10.1016/j.jpowsour.2015.06.135
|
[30]
|
Boon, C., Yong, L. and Wahab, A. (2018) A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews, 81, 536-551. https://doi.org/10.1016/j.rser.2017.08.020
|
[31]
|
Pirhashemi, M., Habibi-Yangjeh, A. and Pouran, S.R. (2018) Review on the Criteria Anticipated for the Fabrication of Highly Efficient ZnO-Based Visible-Light-Driven Photocatalysts. Journal of Industrial and Engineering Chemistry, 62, 1-25.
https://doi.org/10.1016/j.jiec.2018.01.012
|
[32]
|
Krishnakumar, B., Selvam, K., Velmurugan, R. and Swaminathan, M. (2010) Influence of Operational Parameters on Photodegradation of Acid Black 1 with ZnO. Desalination and Water Treatment, 24, 132-139.
https://doi.org/10.5004/dwt.2010.1466
|
[33]
|
Hazime, R., Nguyen, Q.H., Ferronato, C., Salvador, A., Jaber, F. and Chovelon, J.-M. (2014) Comparative Study of Imazalil Degradation in Three Systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Applied Catalysis B: Environmental, 144, 286-291. https://doi.org/10.1016/j.apcatb.2013.07.001
|
[34]
|
Daneshvar, N. and Aber, S. (2009) Influence of Inorganic Oxidants and Metal Ions on Photocatalytic Activity of Prepared Zinc Oxide Nanocrystals. Global NEST Journal, 11, 535-545.
|
[35]
|
Tan, K.L. and Hameed, B.H. (2017) Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25-48. https://doi.org/10.1016/j.jtice.2017.01.024
|
[36]
|
Plazinski, W., Rudzinski, W., Plazinska, A. (2009) Theoretical Models of Sorption Kinetics Including a Surface Reaction Mechanism: A Review. Advances in Colloid and Interface Science, 152, 2-13. https://doi.org/10.1016/j.cis.2009.07.009
|
[37]
|
Zhang, W., Zhang, S., Wang, J., Wang, M., He, Q., Song, J., et al. (2018) Hybrid Functionalized Chitosan-Al2O3@SiO2 Composite for Enhanced Cr(VI) Adsorption. Chemosphere, 203, 188-198. https://doi.org/10.1016/j.chemosphere.2018.03.188
|
[38]
|
Mittal, A., Gajbe, V. and Mittal, J. (2008) Removal and Recovery of Hazardous Triphenylmethane Dye, Methyl Violet through Adsorption over Granulated Waste Materials. Journal of Hazardous Materials, 150, 364-375.
https://doi.org/10.1016/j.jhazmat.2007.04.117
|
[39]
|
Kalavathy, M.H., Karthikeyan, T., Rajgopal, S. and Miranda, L.R. (2005) Kinetic and Isotherm Studies of Cu(II) Adsorption onto H3PO4-Activated Rubber Wood Sawdust. Journal of Colloid and Interface Science, 292, 354-362.
https://doi.org/10.1016/j.jcis.2005.05.087
|
[40]
|
Tan, I.A.W., Ahmad, A.L. and Hameed, B.H. (2009) Adsorption Isotherms, Kinetics, Thermodynamics and Desorption Studies of 2,4,6-Trichlorophenol on Oil Palm Empty Fruit Bunch-Based Activated Carbon. Journal of Hazardous Materials, 164, 473-482. https://doi.org/10.1016/j.jhazmat.2008.08.025
|
[41]
|
Lin, C.I. and Wang, L.H. (2008) Rate Equations and Isotherms for Two Adsorption Models. Journal of the Chinese Institute of Chemical Engineers, 39, 579-585.
https://doi.org/10.1016/j.jcice.2008.04.003
|
[42]
|
Crini, G. and Lichtfouse, E. (2017) Green Adsorbents for Pollutant Removal. Environmental Chemistry for a Sustainable World.
https://doi.org/10.1007/978-3-319-92162-4
|
[43]
|
Zhou, L., Pan, S., Chen, X., Zhao, Y., Zou, B. and Jin, M. (2014) Kinetics and Thermodynamics Studies of Pentachlorophenol Adsorption on Covalently Functionalized Fe3O4@SiO2-MWCNTs Core-Shell Magnetic Microspheres. Chemical Engineering Journal, 257, 10-19. https://doi.org/10.1016/j.cej.2014.07.060
|
[44]
|
Brunauer, S., Emmett, P.H. and Teller, E. (1936) Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 1938, 309-319.
|
[45]
|
Dada, A.O., Olalekan, A.P., Olatunya, A.M. and Dada, O. (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry, 3, 38-45.
|
[46]
|
Ebelegi, A., Ayawei, N., Ebelegi, A.N. and Wankasi, D. (2017) Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017, Article ID: 3039817.
|
[47]
|
Hamdaoui, O. and Naffrechoux, E. (2007) Modeling of Adsorption Isotherms of Phenol and Chlorophenols onto Granular Activated Carbon. Part I. Two-Parameter Models and Equations Allowing Determination of Thermodynamic Parameters. Journal of Hazardous Materials, 147, 381-394.
https://doi.org/10.1016/j.jhazmat.2007.01.021
|
[48]
|
Chung, H.K., Kim, W.H., Park, J., Cho, J., Jeong, T.Y. and Park, P.K. (2015) Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent. Journal of Industrial and Engineering Chemistry, 28, 241-246. https://doi.org/10.1016/j.jiec.2015.02.021
|
[49]
|
Jeppu, G.P. and Clement, T.P. (2012) A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-Dependent Adsorption Effects. Journal of Contaminant Hydrology, 129-130, 46-53. https://doi.org/10.1016/j.jconhyd.2011.12.001
|
[50]
|
Siyasukh, A., Chimupala, Y. and Tonanon, N. (2018) Preparation of Magnetic Hierarchical Porous Carbon Spheres with Graphitic Features for High Methyl Orange Adsorption Capacity. Carbon, 134, 207-221.
https://doi.org/10.1016/j.carbon.2018.03.093
|
[51]
|
Nechifor, G., Pascu, D., Neagu, M.P., Traistaru, G.A. and Albu, P.C. (2015) Comparative Study of Temkin and Flory-Huggins Isotherms for Adsorption of Phosphate Anion on Membranes. UPB Scientific Bulletin, 77, 63-72
|
[52]
|
Vijayaraghavan, K., Padmesh, T.V.N., Palanivelu, K. and Velan, M. (2006) Biosorption of Nickel(II) Ions onto Sargassum wightii: Application of Two-Parameter and Three-Parameter Isotherm Models. Journal of Hazardous Materials, 133, 304-308.
https://doi.org/10.1016/j.jhazmat.2005.10.016
|
[53]
|
Ceylan, Z., Mustafaoglu, D. and Malkoc, E. (2018) Adsorption of Phenol by MMT-CTAB and WPT-CTAB: Equilibrium, Kinetic, and Thermodynamic Study. Particulate Science and Technology, 36, 716-726.
|
[54]
|
Dolic, S.D., Jovanovic, D.J., Smits, K., Babic, B., Marinovic-Cincovic, M., Porobic, S., et al. (2018) A Comparative Study of Photocatalytically Active Nanocrystalline Tetragonal Zyrcon-Type and Monoclinic Scheelite-Type Bismuth Vanadate. Ceramics International, 44, 17953-17961.
https://doi.org/10.1016/j.ceramint.2018.06.272
|
[55]
|
Kalhor, M.M., Rafati, A.A., Rafati, L. and Rafati, A.A. (2018) Synthesis, Characterization and Adsorption Studies of Amino Functionalized Silica Nano Hollow Sphere as an Efficient Adsorbent for Removal of Imidacloprid Pesticide. Journal of Molecular Liquids, 266, 453-459. https://doi.org/10.1016/j.molliq.2018.06.041
|
[56]
|
El-Said, G.F., El-Sadaawy, M.M. and Aly-Eldeen, M.A. (2018) Adsorption Isotherms and Kinetic Studies for the Defluoridation from Aqueous Solution Using Eco-Friendly Raw Marine Green Algae, Ulva lactuca. Environmental Monitoring and Assessment, 190, 14.
|
[57]
|
Sya, A., Salmiati, S., Jonbi, J. and Ali, M. (2018) Application of the Kinetic and Isotherm Models for Better Understanding of the Behaviors of Silver Nanoparticles Adsorption onto Different Adsorbents. Journal of Environmental Management, 218, 59-70. https://doi.org/10.1016/j.jenvman.2018.03.066
|
[58]
|
Rafati, L., Ehrampoush, M.H., Rafati, A.A., Mokhtari, M. and Mahvi, A.H. (2018) Removal of Ibuprofen from Aqueous Solution by Functionalized Strong Nano-Clay Composite Adsorbent: Kinetic and Equilibrium Isotherm Studies. International Journal of Environmental Science and Technology, 15, 513-524.
https://doi.org/10.1007/s13762-017-1393-0
|
[59]
|
Liu, X., Wu, H., Hu, T. and Chen, X. (2018) Adsorption and Leaching of Novel Fungicide Pyraoxystrobin on Soils by 14C Tracing Method. Environmental Monitoring and Assessment, 190, 86. https://doi.org/10.1007/s10661-017-6458-5
|
[60]
|
Zarei, S., Niad, M. and Raanaei, H. (2018) The Removal of Mercury Ion Pollution by Using Fe3O4-Nanocellulose: Synthesis, Characterizations and DFT Studies. Journal of Hazardous Materials, 344, 258-273.
https://doi.org/10.1016/j.jhazmat.2017.10.009
|
[61]
|
Inglezakis, V.J. and Zorpas, A.A. (2012) Heat of Adsorption, Adsorption Energy and Activation Energy in Adsorption and Ion Exchange Systems. Desalination and Water Treatment, 39, 149-157. https://doi.org/10.1080/19443994.2012.669169
|
[62]
|
Douven, S., Paez, C.A. and Gommes, C.J. (2015) The Range of Validity of Sorption Kinetic Models. Journal of Colloid and Interface Science, 448, 437-450.
https://doi.org/10.1016/j.jcis.2015.02.053
|
[63]
|
üner, O., Gecgel, ü., Kolancilar, H. and Bayrak, Y. (2017) Adsorptive Removal of Rhodamine B with Activated Carbon Obtained from Okra Wastes. Chemical Engineering Communications, 204, 772-783.
https://doi.org/10.1080/00986445.2017.1319361
|
[64]
|
Accardo, J.V. and Kalow, J.A. (2018) Reversibly Tuning Hydrogel Stiffness through Photocontrolled Dynamic Covalent Crosslinks. Chemical Science, 9, 5987-5993.
https://doi.org/10.1039/C8SC02093K
|
[65]
|
Shen, W., Zhang, C., Zhang, L., Xu, Q., Cui, Y. and Xu, Y.A (2018) A Modified Avrami Equation for Kinetics of Static Recrystallization of Nb-V Microalloyed Steel: Experiments and Numerical Simulation. Vacuum, 150, 116-123.
https://doi.org/10.1016/j.vacuum.2018.01.022
|
[66]
|
Xiao, Y., Azaiez, J. and Hill, J.M. (2018) Erroneous Application of Pseudo-Second-Order Adsorption Kinetics Model: Ignored Assumptions and Spurious Correlations. Industrial & Engineering Chemistry Research, 57, 2705-2709.
|
[67]
|
Liu, Y., Lan, J., Zhao, Y., Yuan, L., Li, Z., Yuan, Y., et al. (2012) A High Efficient Sorption of U(VI) from Aqueous Solution Using Amino-Functionalized SBA-15. Journal of Radio analytical and Nuclear Chemistry, 291, 803-810.
https://doi.org/10.1007/s10967-011-1515-y
|
[68]
|
Sun, P., Hui, C., Azim Khan, R., Du, J., Zhang, Q. and Zhao, Y.H. (2015) Efficient Removal of Crystal Violet Using Fe3O4-Coated Biochar: The Role of the Fe3O4 Nanoparticles and Modeling Study Their Adsorption Behavior. Scientific Reports, 5, Article No. 12638. https://doi.org/10.1038/srep12638
|
[69]
|
Xin, X., Wei, Q., Yang, J., Yan, L., Feng, R., Chen, G., et al. (2012) Highly Efficient Removal of Heavy Metal Ions by Amine-Functionalized Mesoporous Fe3O4 Nanoparticles. Chemical Engineering Journal, 184, 132-140.
https://doi.org/10.1016/j.cej.2012.01.016
|
[70]
|
John Babu, D., King, P. and Prasanna Kumar, Y. (2018) Optimization of Cu(II) Biosorption onto Sea Urchin Test Using Response Surface Methodology and Artificial Neural Networks. International Journal of Environmental Science and Technology, 1-12.
|
[71]
|
Haerifar, M. and Azizian, S. (2013) Mixed Surface Reaction and Diffusion-Controlled Kinetic Model for Adsorption at the Solid/Solution Interface. The Journal of Physical Chemistry C, 117, 8310-8317.
|
[72]
|
Erhayem, M., Al-tohami, F., Mohamed, R. and Ahmida, K. (2015) Isotherm, Kinetic and Thermodynamic Studies for the Sorption of Mercury(II) onto Activated Carbon from Rosmarinus officinalis Leaves. American Journal of Analytical Chemistry, 6, 1-10. https://doi.org/10.4236/ajac.2015.61001
|
[73]
|
Rao, P., Sun, Z., Zhang, W., Yao, W., Wang, L. and Ding, G. (2015) Preparation and Application of Amorphous Fe-Ti Bimetal Oxides for Arsenic Removal. RSC Advances, 5, 89545-89551. https://doi.org/10.1039/C5RA12039J
|
[74]
|
Mandal, A. and Singh, N. (2016) Kinetic and Isotherm Error Optimization Studies for Adsorption of Atrazine and Imidacloprid on Bark of Eucalyptus tereticornis L. Journal of Environmental Science and Health, Part B, 51, 192-203.
https://doi.org/10.1080/03601234.2015.1108817
|
[75]
|
Amin, M.T., Alazba, A.A. and Shafiq, M. (2015) Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics. Sustainability, 7, 15302-15318. https://doi.org/10.3390/su71115302
|
[76]
|
Inyinbor, A.A., Adekola, F.A. and Olatunji, G.A. (2016) Kinetics, Isotherms and Thermodynamic Modeling of Liquid Phase Adsorption of Rhodamine B Dye onto Raphia hookerie Fruit Epicarp. Water Resources and Industry, 15, 14-27.
https://doi.org/10.1016/j.wri.2016.06.001
|
[77]
|
Aljeboree, A.M., Alshirifi, A.N. and Alkaim, A.F. (2017) Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon. Arabian Journal of Chemistry, 10, 3381-3393.
https://doi.org/10.1016/j.arabjc.2014.01.020
|
[78]
|
Moussout, H., Ahlafi, H., Aazza, M. and Maghat, H. (2018) Critical of Linear and Nonlinear Equations of Pseudo-First Order and Pseudo-Second Order Kinetic Models. Karbala International Journal of Modern Science, 4, 244-254.
https://doi.org/10.1016/j.kijoms.2018.04.001
|
[79]
|
Mrhar, O.A., Assali, H.N. and Lyoubi, M.S.E. (2015) Application of Nonlinear Regression Analysis to Select the Optimum Absorption Isotherm for Methylene Blue Adsorption onto Natural Illitic Clay. Bulletin de la Société Royale des Sciences de Liège, 84, 116-130.
|
[80]
|
Han, R., Wang, Y., Zou, W., Wang, Y. and Shi, J. (2007) Comparison of Linear and Nonlinear Analysis in Estimating the Thomas Model Parameters for Methylene Blue Adsorption onto Natural Zeolite in Fixed-Bed Column. Journal of Hazardous Materials, 145, 331-335. https://doi.org/10.1016/j.jhazmat.2006.12.027
|
[81]
|
Khanday, W.A., Marrakchi, F., Asif, M. and Hameed, B.H. (2017) Mesoporous Zeolite-Activated Carbon Composite from Oil Palm Ash as an Effective Adsorbent for Methylene Blue. Journal of the Taiwan Institute of Chemical Engineers, 70, 32-41.
https://doi.org/10.1016/j.jtice.2016.10.029
|
[82]
|
Kumar, K.V. and Sivanesan, S. (2006) Pseudo Second Order Kinetics and Pseudo Isotherms for Malachite Green onto Activated Carbon: Comparison of Linear and Non-Linear Regression Methods. Journal of Hazardous Materials, 136, 721-726.
https://doi.org/10.1016/j.jhazmat.2006.01.003
|
[83]
|
Ng, J.C.Y., Cheung, W.H. and McKay, G. (2002) Equilibrium Studies of the Sorption of Cu(II) Ions onto Chitosan. Journal of Colloid and Interface Science, 255, 64-74. https://doi.org/10.1006/jcis.2002.8664
|
[84]
|
Foo, K.Y. and Hameed, B.H. (2010) Insights into the Modeling of Adsorption Isotherm Systems. Chemical Engineering Journal, 156, 2-10.
https://doi.org/10.1016/j.cej.2009.09.013
|
[85]
|
Chen, X. (2015) Modeling of Experimental Adsorption Isotherm Data. Information, 6, 14-22. https://doi.org/10.3390/info6010014
|
[86]
|
Guo, H., Lin, K., Zheng, Z., Xiao, F. and Li, S. (2012) Sulfanilic Acid-Modified P25 TiO2 Nanoparticles with Improved Photocatalytic Degradation on Congo Red under Visible Light. Dyes and Pigments, 92, 1278-1284.
https://doi.org/10.1016/j.dyepig.2011.09.004
|
[87]
|
Vinu, R. and Madras, G. (2010) Environmental Remediation by Photocatalysis. Journal of the Indian Institute of Science, 90, 189-230
|
[88]
|
Janotti, A. and Van de Walle, C.G. (2009) Fundamentals of Zinc Oxide as a Semiconductor. Reports on Progress in Physics, 72, Article ID: 126501.
|
[89]
|
Madhusudhana, N., Yogendra, K., Mahadevan, K.M. and Cao, K. (2012) A Comparative Study on Photocatalytic Degradation of Violet GL2B Azo Dye Using CaO and TiO2 Nanoparticles. International Journal of Engineering Research and Applications, 2, 1300-1307.
|
[90]
|
Song, M.X., Bian, L., Zhou, T.L. and Zhao, X.Y. (2008) Surface ζ Potential and Photocatalytic Activity of Rare Earths Doped TiO2. Journal of Rare Earths, 26, 693-699. https://doi.org/10.1016/S1002-0721(08)60165-9
|
[91]
|
Wang, D., Wang, Y., Li, X., Luo, Q., An, J. and Yue, J. (2008) Sunlight Photocatalytic Activity of Polypyrrole—TiO2 Nanocomposites Prepared by “in Situ” Method. Catalysis Communications, 9, 1162-1166.
https://doi.org/10.1016/j.catcom.2007.10.027
|
[92]
|
Macák, J.M., Tsuchiya, H., Ghicov, A. and Schmuki, P. (2005) Dye-Sensitized Anodic TiO2 Nanotubes. Electrochemistry Communications, 7, 1133-1137.
https://doi.org/10.1016/j.elecom.2005.08.013
|
[93]
|
An, H., Zhou, J., Li, J., Zhu, B., Wang, S., Zhang, S., et al. (2009) Deposition of Pt on the Stable Nanotubular TiO2 and Its Photocatalytic Performance. Catalysis Communications, 11, 175-179. https://doi.org/10.1016/j.catcom.2009.09.020
|
[94]
|
Wang, X., Zhang, S., Peng, B., Wang, H., Yu, H. and Peng, F. (2016) Enhancing the Photocatalytic Efficiency of TiO2 Nanotube Arrays for H2 Production by Using Non-Noble Metal Cobalt as Co-Catalyst. Materials Letters, 165, 37-40.
https://doi.org/10.1016/j.matlet.2015.11.103
|
[95]
|
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J. and Xu, Y. (2015) Photocatalysis Fundamentals and Surface Modification of TiO2 Nanomaterials. Chinese Journal of Catalysis, 36, 2049-2070. https://doi.org/10.1016/S1872-2067(15)60999-8
|
[96]
|
Kumar, S.G. and Rao, K.S.R.K. (2017) Comparison of Modification Strategies towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (TiO2, WO3 and ZnO). Applied Surface Science, 391, 124-148. https://doi.org/10.1016/j.apsusc.2016.07.081
|
[97]
|
Qian, S., Wang, C., Liu, W., Zhu, Y., Yao W. and Lu, X. (2011) An Enhanced CdS/TiO2 Photocatalyst with High Stability and Activity: Effect of Mesoporous Substrate and Bifunctional Linking Molecule. Journal of Material Chemistry, 21, 4945-4952. https://doi.org/10.1039/c0jm03508d
|
[98]
|
Zhang, D. (2010) Synthesis and Characterization of ZnO-Doped Cupric Oxides and Evaluation of Their Photocatalytic Performance under Visible Light. Transition Metal Chemistry, 35, 689-694. https://doi.org/10.1007/s11243-010-9380-z
|
[99]
|
Zhang, D. and Zeng, F. (2010) Structural, Photochemical and Photocatalytic Properties of Zirconium Oxide Doped TiO2 Nanocrystallites. Applied Surface Science, 257, 867-871. https://doi.org/10.1016/j.apsusc.2010.07.083
|
[100]
|
Lin, C. and Chiang, Y. (2012) Preparation of Coupled ZnO/SnO2 Photocatalysts Using a Rotating Packed Bed. Chemical Engineering Journal, 181-182, 196-205.
https://doi.org/10.1016/j.cej.2011.11.062
|
[101]
|
Hayat, K., Gondal, M.A., Khaled, M.M., Ahmed, S. and Shemsi, A.M. (2011) Nano ZnO Synthesis by Modified Sol-Gel Method and Its Application in Heterogeneous Photocatalytic Removal of Phenol from Water. Applied Catalysis A: General, 393, 122-129. https://doi.org/10.1016/j.apcata.2010.11.032
|
[102]
|
Renuka, L., Anantharaju, K.S., Vidya, Y.S., Nagaswarupa, H.P., Prashantha, S.C., et al. (2017) A Simple Combustion Method for the Synthesis of Multi-Functional ZrO2/CuO Nanocomposites: Excellent Performance as Sunlight Photocatalysts and Enhanced Latent Fingerprint Detection. Applied Catalysis B: Environmental, 210, 97-115. https://doi.org/10.1016/j.apcatb.2017.03.055
|
[103]
|
Assi, N., Mohammadi, A., Manuchehri, Q.S. and Walker, R.B. (2014) Synthesis and Characterization of ZnO Nanoparticle Synthesized by a Microwave-Assisted Combustion Method and Catalytic Activity for the Removal of Ortho-Nitrophenol. Desalination and Water Treatment, 54, 1939-1948.
|
[104]
|
Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010) Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research, 44, 2997-3027. https://doi.org/10.1016/j.watres.2010.02.039
|
[105]
|
Shafaei, A., Nikazar, M. and Arami, M. (2010) Photocatalytic Degradation of Terephthalic Acid Using Titania and Zinc Oxide Photocatalysts: Comparative Study. Desalination, 252, 8-16. https://doi.org/10.1016/j.desal.2009.11.008
|
[106]
|
Bayarri, B., Abellán, M.N., Giménez, J. and Esplugas, S. (2007) Study of the Wavelength Effect in the Photolysis and Heterogeneous Photocatalysis. Catalysis Today, 129, 231-239. https://doi.org/10.1016/j.cattod.2007.08.006
|
[107]
|
Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G., Sklaviadis, T. and Poulios, I. (2008) Photocatalytic Degradation and Drug Activity Reduction of Chloramphenicol. Water Research, 42, 386-394.
https://doi.org/10.1016/j.watres.2007.07.030
|
[108]
|
Yusoff, N., Ong, S.-A., Ho, L.-N., Wong, Y.-S. and Khalik, W.F. (2015) Degradation of Phenol through Solar-Photocatalytic Treatment by Zinc Oxide in Aqueous Solution. Desalination and Water Treatment, 54, 1621-1628.
|
[109]
|
Banerjee, P., Chakrabarti, S., Maitra, S. and Dutta, B.K. (2012) Zinc Oxide Nano-Particles—Sonochemical Synthesis, Characterization and Application for Photo-Remediation of Heavy Metal. Ultrasonics Sonochemistry, 19, 85-93.
https://doi.org/10.1016/j.ultsonch.2011.05.007
|
[110]
|
Neppolian, B., Wang, Q., Yamashita, H. and Choi, H. (2007) Synthesis and Characterization of ZrO2-TiO2 Binary Oxide Semiconductor Nanoparticles: Application and Interparticle Electron Transfer Process. Applied Catalysis A: General, 333, 264-271. https://doi.org/10.1016/j.apcata.2007.09.026
|
[111]
|
Wang, F., Qin, X., Guo, Z., Meng, Y., Yang, L. and Ming, Y. (2013) Hydrothermal Synthesis of Dumbbell-Shaped ZnO Microstructures. Ceramics International, 39, 8969-8973. https://doi.org/10.1016/j.ceramint.2013.04.096
|
[112]
|
Fang, Y., Li, Z., Xu, S., Han, D. and Lu, D. (2013) Optical Properties and Photocatalytic Activities of Spherical ZnO and Flower-Like ZnO Structures Synthesized by Facile Hydrothermal Method. Journal of Alloys and Compounds, 575, 359-363.
https://doi.org/10.1016/j.jallcom.2013.05.183
|
[113]
|
Akir, S., Barras, A., Coffinier, Y., Bououdina, M., Boukherroub, R. and Omrani, A.D. (2016) Eco-Friendly Synthesis of ZnO Nanoparticles with Different Morphologies and Their Visible Light Photocatalytic Performance for the Degradation of Rhodamine B. Ceramics International, 42, 10259-10265.
https://doi.org/10.1016/j.ceramint.2016.03.153
|
[114]
|
Davar, F. and Salavati-Niasari, M. (2011) Synthesis and Characterization of Spinel-Type Zinc Aluminate Nanoparticles by a Modified Sol-Gel Method Using New Precursor. Journal of Alloys and Compounds, 509, 2487-2492.
https://doi.org/10.1016/j.jallcom.2010.11.058
|
[115]
|
Hong, R., Pan, T., Qian, J. and Li, H. (2006) Synthesis and Surface Modification of ZnO Nanoparticles. Chemical Engineering Journal, 119, 71-81.
https://doi.org/10.1016/j.cej.2006.03.003
|
[116]
|
Silane, T. and Acid, O. (2015) Surface Modification of ZnO Nano-Particles with Trimetoxyvinyl Silane and Oleic Acid and Studying Their Dispersion in Organic Media. International Journal of Nano Dimension, 6, 67-75.
|
[117]
|
Zhao, J., Milanova, M., Warmoeskerken, M.M.C.G. and Dutschk, V. (2012) Surface Modification of TiO2 Nanoparticles with Silane Coupling Agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413, 273-279.
https://doi.org/10.1016/j.colsurfa.2011.11.033
|
[118]
|
Zhang, X., Xia, Y. and He, T. (2012) Tuning Photoluminescence Properties of ZnO Nanorods via Surface Modification. Materials Chemistry and Physics, 137, 622-627.
https://doi.org/10.1016/j.matchemphys.2012.09.065
|
[119]
|
Lee, K.M., Lai, C.W., Ngai, K.S. and Juan, J.C. (2016) Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review. Water Research, 88, 428-448. https://doi.org/10.1016/j.watres.2015.09.045
|
[120]
|
Marschall, R. (2014) Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Advanced Functional Materials, 24, 2421-2440. https://doi.org/10.1002/adfm.201303214
|
[121]
|
Patnaik, S., Martha, S., Acharya, S. and Parida, K.M. (2016) An Overview of the Modification of g-C3N4 with High Carbon Containing Materials for Photocatalytic Applications. Inorganic Chemistry Frontiers, 3, 336-347.
|
[122]
|
Wang, Z., Liu, Y., Huang, B., Dai, Y., Lou, Z., et al. (2014) Progress on Extending the Light Absorption Spectra of Photocatalysts. Physical Chemistry Chemical Physics, 16, 2758-2774. https://doi.org/10.1039/c3cp53817f
|
[123]
|
Zhang, X., Wang, Y., Liu, B., Sang, Y. and Liu, H. (2017) Heterostructures Construction on TiO2 Nanobelts: A Powerful Tool for Building High-Performance Photocatalysts. Applied Catalysis B: Environmental, 202, 620-641.
https://doi.org/10.1016/j.apcatb.2016.09.068
|
[124]
|
Chang, S.J., Yang, X.Q., Sang, Y.H. and Liu, H. (2016) Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater. Chemistry—An Asian Journal, 11, 2352-2371.
https://doi.org/10.1002/asia.201600363
|
[125]
|
Mamba, G. and Mishra, A.K. (2016) Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation. Applied Catalysis B: Environmental, 198, 347-377. https://doi.org/10.1016/j.apcatb.2016.05.052
|
[126]
|
Xu, H., Ju, J., Li, W., Zhang, J., Wang, J. and Cao, B. (2016) Superior Triethylamine-Sensing Properties Based on TiO2/SnO2 n-n Heterojunction Nanosheets Directly Grown on Ceramic Tubes. Sensors and Actuators B: Chemical, 228, 634-642.
https://doi.org/10.1016/j.snb.2016.01.059
|
[127]
|
Ma, L., Fan, H., Tian, H., Fang, J. and Qian, X. (2016) The n-ZnO/n-In2O3 Heterojunction Formed by a Surface-Modification and Their Potential Barrier-Control in Methanal Gas Sensing. Sensors and Actuators B: Chemical, 222, 508-516.
https://doi.org/10.1016/j.snb.2015.08.085
|
[128]
|
Cai, A., Sun, Y., Du, L. and Wang, X. (2015) Hierarchical Ag2O-ZnO-Fe3O4 Composites with Enhanced Visible-Light Photocatalytic Activity. Journal of Alloys and Compounds Journal, 644, 334-340. https://doi.org/10.1016/j.jallcom.2015.03.236
|
[129]
|
Shekofteh-Gohari, M. and Habibi-Yangjeh, A. (2015) Ternary ZnO/Ag3VO4/Fe3O4 Nanocomposites: Novel Magnetically Separable Photocatalyst for Efficiently Degradation of Dye Pollutants under Visible-Light Irradiation. Solid State Sciences, 48, 177-185. https://doi.org/10.1016/j.solidstatesciences.2015.08.010
|
[130]
|
Shekofteh-Gohari, M. and Habibi-Yangjeh, A. (2015) Facile Preparation of Fe3O4@AgBr-ZnO Nanocomposites as Novel Magnetically Separable Visible-Light-Driven Photocatalysts. Ceramics International, 41, 1467-1476.
https://doi.org/10.1016/j.ceramint.2014.09.081
|
[131]
|
Shekofteh-Gohari, M. and Habibi-Yangjeh, A. (2017) Fe3O4/ZnO/CoWO4 Nanocomposites: Novel Magnetically Separable Visible-Light-Driven Photocatalysts with Enhanced Activity in Degradation of Different Dye Pollutants. Ceramics International, 43, 3063-3071. https://doi.org/10.1016/j.ceramint.2016.11.115
|
[132]
|
Shekofteh-Gohari, M. and Habibi-Yangjeh, A. (2015) Novel Magnetically Separable Fe3O4@ZnO/AgCl Nanocomposites with Highly Enhanced Photocatalytic Activities under Visible-Light Irradiation. Separation and Purification Technology, 147, 194-202. https://doi.org/10.1016/j.seppur.2015.04.034
|
[133]
|
Shekofteh-Gohari, M. and Habibi-Yangjeh, A. (2016) Ultrasonic-Assisted Preparation of Novel Ternary ZnO/AgI/Fe3O4 Nanocomposites as Magnetically Separable Visible-Light-Driven Photocatalysts with Excellent Activity. Journal of Colloid and Interface Science, 461, 144-153. https://doi.org/10.1016/j.jcis.2015.09.032
|
[134]
|
Habibi-Yangjeh, A. and Shekofteh-Gohari, M. (2017) Novel Magnetic Fe3O4/ ZnO/NiWO4 Nanocomposites: Enhanced Visible-Light Photocatalytic Performance through p-n Heterojunctions. Separation and Purification Technology, 184, 334-346. https://doi.org/10.1016/j.seppur.2017.05.007
|
[135]
|
Fagerlund G. (1973) Determination of Specific Surface by the BET Method. Matériaux et Construction, 6, 239-245. https://doi.org/10.1007/BF02479039
|
[136]
|
Kestens, V., Roebben, G., Herrmann, J., Coleman, V., Minelli, C., Clifford, C., et al. (2016) Challenges in the Size Analysis of a Silica Nanoparticle Mixture as Candidate Certified Reference Material. Journal of Nanoparticle Research, 18, 171.
https://doi.org/10.1007/s11051-016-3474-2
|
[137]
|
Sikora, A., Shard, A.G. and Minelli, C. (2016) Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing. Langmuir, 32, 2216-2224.
|
[138]
|
Torchynska, T.V., El Filali, B., Ballardo Rodríguez, I.Ch. and Shcherbyna, L. (2016) Defect Related Emission of ZnO and ZnO Cu Nanocrystals Prepared by Electrochemical Method. Physica Status Solidi C, 13, 594-597.
https://doi.org/10.1002/pssc.201510277
|
[139]
|
Bahadar, H., Maqbool, F., Niaz, K. and Abdollahi, M. (2016) Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iranian Biomedical Journal, 20, 1-11.
|
[140]
|
Khan, H.A. and Shanker, R. (2015) Toxicity of Nanomaterials. BioMed Research International, 2015, Article ID 521014. https://doi.org/10.1155/2015/521014
|