The Planar Ramsey Numbers PR (K4-e, Kl) ()
Yongqi Sun,
Yali Wu,
Rui Zhang,
Yuansheng Yang
Department of Computer Science, Dalian University of Technology, Dalian, China.
School of Computer and Information Technology, Beijing jiaotong University, Beijing, China.
DOI: 10.4236/ajcm.2013.33B009
PDF
HTML
2,732
Downloads
4,456
Views
Citations
Abstract
The planar Ramsey number PR (H1, H2) is the smallest integer n such that any planar graph on n vertices contains a copy of H1 or its complement contains a copy of H2.
It is known that the Ramsey number R(K4 -e, K6)
= 21, and the planar Ramsey numbers PR(K4 - e, Kl)
for l ≤ 5 are known. In this paper,
we give the lower bounds on PR (K4 ? e, Kl) and determine
the exact value of PR (K4 - e, K6).
Share and Cite:
Y. Sun, Y. Wu, R. Zhang and Y. Yang, "The Planar Ramsey Numbers PR (K
4-e, K
l),"
American Journal of Computational Mathematics, Vol. 3 No. 3B, 2013, pp. 52-55. doi:
10.4236/ajcm.2013.33B009.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
H. Bielak and I. Gorgol, “On Planar Ramsey Number for a Small and a Complete Graph,” Manuscript, 1997.
|
[2]
|
I. Gorgol, “Planar Ramsey Numbers,” Discussiones Mathematicae Graph Theory, Vol. 25, No. 1-2, 2005, pp. 45-50. doi:10.7151/dmgt.1258
|
[3]
|
R. Steinberg and C. A. Tovey, “Planar Ramsey Number,” Journal of Combinatorial Theory, Series B, Vol. 59, No. 2, 1993, pp. 288-296. doi:10.1006/jctb.1993.1070
|
[4]
|
S. P. Radziszowski, “Small Ramsey Numbers,” Electronic Journal of Combinatorics,http://www.combinatorics.org/, #R13, 2011, p. 84.
|
[5]
|
Y. Q. Sun, Y. S. Yang, X. H. Lin and J. Qiao, “The Planar Ramsey Number PR (K4-e, K5),” Discrete Mathematics, Vol. 307, No. 1, 2007, pp. 137-142.
doi:10.1016/j.disc.2006.05.034
|
[6]
|
Y. Q. Sun, Y. S. Yang and Z. H. Wang, “The Planar Ramsey Number PR (K4-e, Kk-e),” ARS Combinatoria, Vol. 88, 2008, pp. 3-20.
|
[7]
|
K. Walker, “The Analog of Ramsey Numbers for Planar Graphs,” Bulletin of the London Mathematical Society, Vol. 1, No. 2, 1969, pp. 187-190.
doi:10.1112/blms/1.2.187
|