Copper Recovery from Barren Cyanide Solution by Using Electrocoagulation Iron Process


This paper is a brief overview of the role of inducing the nucleated electro winning of copper by using iron electrodes in electrocoagulation (EC) process. Cyanide compounds are widely used in gold ore processing plants in order to facilitate the extraction and subsequent concentration of the precious metal. Owing to cyanide solution employed in gold processing, effluents generated have high contents of free cyanide as well as copper cyanide complexes, which lend them a high degree of toxicity. In this regard, two options for the treatment of cyanide barren solutions has been used; in two ways; first for cyanide destruction by oxidation with the use of the EC process, in theory, has the advantage of decomposing cyanide at the anode and collecting copper simultaneously by a sludge of copper magnetic iron. In both cases excellent performance can be achieved using the high capacity of the bipolar iron EC technology. We found that it is possible to reduce the copper cyanide complex from 720 mg·l1 to below 10 mg·l1 within 20 minutes.

Share and Cite:

J. Parga, G. Munive, J. Valenzuela, V. Vazquez and G. Zamarripa, "Copper Recovery from Barren Cyanide Solution by Using Electrocoagulation Iron Process," Advances in Chemical Engineering and Science, Vol. 3 No. 2, 2013, pp. 150-156. doi: 10.4236/aces.2013.32018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. M. Muir, S. R. LaBrooy and C. Cao, “Recovery of Gold Fromcopper-Bearing Ores,” In: R. J. Harden, Ed., Gold Forum Ontechnology and Practic, World Gold, 1989.
[2] J. O. Marsden abd C. I. House, “The Chemistry of Gold Extraction,” 2nd Edition, Society for Mining, Metallurgy and Exploration, Inc., Littleton, 2006.
[3] J. R. Parga, S. S. Shukla and D. L. Cocke, “Photocatalytic Detoxification of Cyanide and Recovery of Titanium Dioxide by Electrocoagulation,” Research Journal of Chemistry and Environment, Vol. 9, No. 1, 2005, pp. 60-63.
[4] S. T. Mudder, “The Chemistry and Treatment of Cyanidation Wastes,” Mining Journal Books Limited, London, 1991, pp. 277-278.
[5] M. D. Adams and R. Lawrance, “Biogenic Sulphide for Cyanide Recycle and Copper Recovery in Gold-Copper Ore Processing,” International Workshop on Process Hydrometallurgy, Hydroprocess Brisbone, 2008, pp. 14-16.
[6] O. Asare, K. Xue and T. Ciminelli, “Solution Chemistry of Cyanide Leaching Systems. In Precious Metals Mineralogy,” Extraction and Processing-Proceedings of and International Symposium, 1984, pp. 173-197.
[7] N. Mameri, A. R. Yeddou, H. Lounici, D. Belhocine, H. Grib and B. Bariou, “Defluoridation of Septentrional Sahara Water of North Africa by Electrocoagulation Process Using Bipolar Aluminum Electrodes,” Water Research, Vol. 32, No. 5, 1998, pp. 1604-1612. doi:10.1016/S0043-1354(97)00357-6
[8] W. A. Pretorius, W. G. Johannes and G. G. Lempert, “Electrolytic Iron Flocculant Production with a Bipolar Electrode in Series Arrangement,” Water South Africa, Vol. 17, No. 2, 1991, pp. 133-138.
[9] G. Pavas, M. P. Camargo, C. Jones and V. T. Pineda, “Oxidación Fotocatalítica de Cianuro,” Universidad EAFIT, Medellín, 2005, pp. 56-58.
[10] J. R. Parga, H. M. Casillas, V. Vazquez and J. L. Valenzuela, “Cyanide Detoxification of Mining Wastewaters with TiO2 Nanoparticles and Its Recovery by Electrocoagulation,” Chemical Engineering and Technology, Vol. 32, No. 12, 2009, pp. 1901-1908. doi:10.1002/ceat.200900177
[11] G. Vicuna and I. Tunon, “Apuntes de Química Avanzada,” Departamento de Química-Física. Universidad de Valencia, 2006, pp. 103-115.
[12] A. G. Gupta and S. Kundu, “Adsorptive Removal of As(III) from Aqueous Solution Using Iron Oxide Coated Cement (IOCC): Evaluation of Kinetic Equilibrium and Thermodynamic Models,” Separation and Purification Technology, Vol. 51, No. 2, 2006, pp. 165-172. doi:10.1016/j.seppur.2006.01.007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.