[1]
|
MacLeod, M., Arp, H.P.H., Tekman, M.B. and Jahnke, A. (2021) The Global Threat from Plastic Pollution. Science, 373, 61-65. https://doi.org/10.1126/science.abg5433
|
[2]
|
Yang, M. (2018) Reflections on the Development Status and Challenges of China’s Plastic Processing Industry. Proceedings of the 2018 Annual Meeting of the Modified Plastics Committee of China Plastics Processing Industry Association, Nanjing, 26-28 October 2018, 31-32.
|
[3]
|
Nazareth, M., Marques, M.R.C., Leite, M.C.A. and Castro, Í.B. (2019) Commercial Plastics Claiming Biodegradable Status: Is This Also Accurate for Marine Environments? Journal of Hazardous Materials, 366, 714-722. https://doi.org/10.1016/j.jhazmat.2018.12.052
|
[4]
|
Fischer, E.K., Paglialonga, L., Czech, E. and Tamminga, M. (2016) Microplastic Pollution in Lakes and Lake Shoreline Sediments—A Case Study on Lake Bolsena and Lake Chiusi (Central Italy). Environmental Pollution, 213, 648-657. https://doi.org/10.1016/j.envpol.2016.03.012
|
[5]
|
Vethaak, A.D. and Legler, J. (2021) Microplastics and Human Health. Science, 371, 672-674. https://doi.org/10.1126/science.abe5041
|
[6]
|
Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Garcia-Vallejo, J.J. and Lamoree, M.H. (2022) Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environment International, 163, Article ID: 107199. https://doi.org/10.1016/j.envint.2022.107199
|
[7]
|
Smith, M., Love, D.C., Rochman, C.M. and Neff, R.A. (2018) Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports, 5, 375-386. https://doi.org/10.1007/s40572-018-0206-z
|
[8]
|
(2021) From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution. The United Nations Environment Programme. https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution
|
[9]
|
Huan, Z. (2022) Breaking the Deadlock of Plastic Pollution: China in Action—A Look at China’s Efforts and Achievements in Plastic Pollution Control on the Occasion of World Earth Day. National Development and Reform Commission. https://www.ndrc.gov.cn/xwdt/ztzl/slwrzlzxd/202205/t20220523_1325163.html
|
[10]
|
Dong, L. and Zhang, C. (2020) Characteristics of Pollution Production and Management Over-View in the Plastic Products Industry. The Environmental Impact Assessment, 42, 47-50.
|
[11]
|
(2024) Plastic Market Size, Share & Trends Analysis Report by Product (PE, PP, PU, PVC, PET, PS), by Application (Injection Molding, Blow Molding, Roto Molding, Compression Molding), By End-Use, By Region, and Segment Forecasts. Grand View Research. https://www.grandviewresearch.com/industry-analysis/global-plastics-market
|
[12]
|
Deng, Y. and Wang, Y. (2020) Research on Alternative Management Strategies for Disposable Plastic Products. Research of Environmental Sciences, 33, 1973-1978.
|
[13]
|
Qi, W., Jinping, Q., Bi, S., Ning, C., Min, N. and Shuangqiao, Y. (2021) Prevention and Control of Waste Plastics Pollution in China. Chinese Journal of Engineering Science, 23, 160-166. https://doi.org/10.15302/j-sscae-2021.01.020
|
[14]
|
Shen, C., Deng, Y., Zhang, J. and Zhang, C. (2021) Improve Life Cycle Management of Plastic Pollution in China. Research of Environmental Sciences, 34, 2026-2034.
|
[15]
|
(2023) Broken Record Temperatures Hit New Highs, Yet World Fails to Cut Emissions (Again). UN Environment Programme. https://reliefweb.int/report/world/emissions-gap-report-2023-broken-record-temperatures-hit-new-highs-yet-world-fails-cut-emissions-again
|
[16]
|
(2024) Action Plan for Carbon Peak Before 2030, The State Council of the People’s Republic of China. https://www.gov.cn/zhengce/content/2021-10/26/content_5644984.html
|
[17]
|
Li, G. (2021) Thoughts on Plastic Pollution Control under the Upgraded Plastic Restriction Policy. People’s Forum, 5, 78-80.
|
[18]
|
Du, H. and Fan, Y. (2021) Real Dilemmas and Path Breakthroughs in Building a Closed-Loop Recycling System for Waste Plastics. Science and Development, 2, 93-100.
|
[19]
|
Huang, J., Hu, Y., Zhu, Y., Jiang, Y. and Pan, C. (2022) Review on the Whole-Chain Comprehensive Management of Plastic Pollution from the Perspective of Standardization: Taking Express Plastic Packaging as an Example. China Standardization, 2022, 151-156.
|
[20]
|
Ministry of Commerce of the People’s Republic of China (2021) Opinions on Fully, Accurately, and Comprehensively Implementing the New Development Concept to Achieve Carbon Peak and Carbon Neutrality. https://www.mofcom.gov.cn/zcfb/zgdwjjmywg/art/2021/art_dee4aa25a54049d1bd69b6cfff7d195d.html
|
[21]
|
Kou, J. and Liu, W. (2024) Implementing Dual Carbon Actions to Build a Beautiful China. People’s Daily. http://env.people.com.cn/n1/2024/0428/c1010-40225286.html
|
[22]
|
Zhu, M. and Stern, N. (2023) Embracing a New Paradigm of Green Development: A Study Report on China’s Carbon Neutrality Policy Framework. Energy Foundation. https://www.efchina.org/Attachments/Report/report-lceg-20230411-zh/
|
[23]
|
(2023) State Administration for Market Regulation. The European Union Packaging and Packaging Waste Regulations (PPWR) Proposal Is Officially Released. State Administration of Market Supervision and Administration. https://www.samr.gov.cn/gjhzs/jsxmycs/dt/art/2023/art_8343f3d5675e41a28fe2dd15f558d9f3.html
|
[24]
|
Office of the Spokesperson (2022) U.S. Actions to Address Plastic Pollution. US Department of State. https://www.state.gov/u-s-actions-to-address-plastic-pollution
|
[25]
|
Du, H. (2020) South Korea Aims to Reduce Plastic Waste by 20% by 2025. Yonhap News Agency. https://cn.yna.co.kr/view/ACK20201224005200881
|
[26]
|
Chen, X. (2019) The Reasons and Impacts of Japan’s “Plastic Resource Recycling Strategy”. Japanese Studies, 6, 29-41.
|
[27]
|
Lo, T. (2023) Further Expansion of Single-Use Plastics Ban in Three Australian States. Special Broadcasting Service News.
|
[28]
|
Zhang, Z. (2021) Discussion on the “New Plastic Restriction Policy” from the Perspective of the Circular Economy Law. Journal of Shenyang University of Technology, 14, 180-187.
|
[29]
|
Zhou, Q., Zou, Q. and Xia, R. (2023) Research on China’s Biodegradable Plastic Industry under Global Competitiveness: Based on Patent Analysis. Journal of Beijing City University, 2, 68-73.
|
[30]
|
Scaffaro, R., Botta, L. and Di Benedetto, G. (2012) Physical Properties of Virgin-Recycled ABS Blends: Effect of Post-Consumer Content and of Reprocessing Cycles. European Polymer Journal, 48, 637-648. https://doi.org/10.1016/j.eurpolymj.2011.12.018
|
[31]
|
Bai, X., Liang, P., Zhang, M., Gong, S. and Zhao, L. (2021) Effects of Reprocessing on Acrylonitrile-Butadiene-Styrene and Additives. Journal of Polymers and the Environment, 30, 1803-1819. https://doi.org/10.1007/s10924-021-02314-z
|
[32]
|
Awaja, F. and Pavel, D. (2005) Recycling of Pet. European Polymer Journal, 41, 1453-1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005
|
[33]
|
Wu, H., Lv, S., He, Y. and Qu, J. (2019) The Study of the Thermomechanical Degradation and Mechanical Properties of PET Recycled by Industrial-Scale Elongational Processing. Polymer Testing, 77, Article ID: 105882. https://doi.org/10.1016/j.polymertesting.2019.04.029
|
[34]
|
Cosate de Andrade, M.F., Fonseca, G., Morales, A.R. and Mei, L.H.I. (2017) Mechanical Recycling Simulation of Polylactide Using a Chain Extender. Advances in Polymer Technology, 37, 2053-2060. https://doi.org/10.1002/adv.21863
|
[35]
|
Vollmer, I., Jenks, M.J.F., Roelands, M.C.P., White, R.J., van Harmelen, T., de Wild, P., et al. (2020) Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59, 15402-15423. https://doi.org/10.1002/anie.201915651
|
[36]
|
Viora, L., Combeau, M., Pucci, M.F., Perrin, D., Liotier, P., Bouvard, J., et al. (2023) A Comparative Study on Crystallisation for Virgin and Recycled Polyethylene Terephthalate (PET): Multiscale Effects on Physico-Mechanical Properties. Polymers, 15, Article 4613. https://doi.org/10.3390/polym15234613
|
[37]
|
Muringayil Joseph, T., Azat, S., Ahmadi, Z., Moini Jazani, O., Esmaeili, A., Kianfar, E., et al. (2024) Polyethylene Terephthalate (PET) Recycling: A Review. Case Studies in Chemical and Environmental Engineering, 9, Article ID: 100673. https://doi.org/10.1016/j.cscee.2024.100673
|
[38]
|
Guclu, M., Alkan Göksu, Y., Özdemir, B., Ghanbari, A. and Nofar, M. (2021) Thermal Stabilization of Recycled PET through Chain Extension and Blending with PBT. Journal of Polymers and the Environment, 30, 719-727. https://doi.org/10.1007/s10924-021-02238-8
|
[39]
|
Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H. and AbdulGhani, A. (2022) Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Current Research in Green and Sustainable Chemistry, 5, Article ID: 100273. https://doi.org/10.1016/j.crgsc.2022.100273
|
[40]
|
Harding, K., Dennis, J., Vonblottnitz, H. and Harrison, S. (2007) Environmental Analysis of Plastic Production Processes: Comparing Petroleum-Based Polypropylene and Polyethylene with Biologically-Based Poly-Β-Hydroxybutyric Acid Using Life Cycle Analysis. Journal of Biotechnology, 130, 57-66. https://doi.org/10.1016/j.jbiotec.2007.02.012
|
[41]
|
Hottle, T.A., Bilec, M.M. and Landis, A.E. (2017) Biopolymer Production and End of Life Comparisons Using Life Cycle Assessment. Resources, Conservation and Recycling, 122, 295-306. https://doi.org/10.1016/j.resconrec.2017.03.002
|
[42]
|
Filiciotto, L. and Rothenberg, G. (2020) Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem, 14, 56-72. https://doi.org/10.1002/cssc.202002044
|
[43]
|
Nazareth, M.C., Marques, M.R.C., Pinheiro, L.M. and Castro, Í.B. (2022) Key Issues for Bio-Based, Biodegradable and Compostable Plastics Governance. Journal of Environmental Management, 322, Article ID: 116074. https://doi.org/10.1016/j.jenvman.2022.116074
|
[44]
|
Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., AbdulGhani, A., et al. (2022) Green Product Innovation: A Means Towards Achieving Global Sustainable Product within Biodegradable Plastic Industry. Journal of Cleaner Production, 363, Article ID: 132506. https://doi.org/10.1016/j.jclepro.2022.132506
|
[45]
|
RameshKumar, S., Shaiju, P., O’Connor, K.E. and P, R.B. (2020) Bio-Based and Biodegradable Polymers—State-of-the-Art, Challenges and Emerging Trends. Current Opinion in Green and Sustainable Chemistry, 21, 75-81. https://doi.org/10.1016/j.cogsc.2019.12.005
|
[46]
|
Zhang, X. (2021) Market and Capacity Analysis of China’s Biodegradable Polymer New Material PBAT. Sichuan Chemical Engineering, 24, 4-7.
|
[47]
|
Li, J. (2023) A Brief Analysis of the Development Status of Biodegradable Plastic Industry in China. Petroleum & Petrochemical Today, 31, 23-26.
|
[48]
|
Kost, B., Svyntkivska, M., Brzeziński, M., Makowski, T., Piorkowska, E., Rajkowska, K., et al. (2020) Pla/β-CD-Based Fibres Loaded with Quercetin as Potential Antibacterial Dressing Materials. Colloids and Surfaces B: Biointerfaces, 190, Article ID: 110949. https://doi.org/10.1016/j.colsurfb.2020.110949
|
[49]
|
Farah, S., Anderson, D.G. and Langer, R. (2016) Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012
|
[50]
|
Mukherjee, T. and Kao, N. (2011) PLA Based Biopolymer Reinforced with Natural Fibre: A Review. Journal of Polymers and the Environment, 19, 714-725. https://doi.org/10.1007/s10924-011-0320-6
|
[51]
|
Bajpai, P.K., Singh, I. and Madaan, J. (2012) Development and Characterization of Pla-Based Green Composites. Journal of Thermoplastic Composite Materials, 27, 52-81. https://doi.org/10.1177/0892705712439571
|
[52]
|
Cheng, Y., Deng, S., Chen, P. and Ruan, R. (2009) Polylactic Acid (PLA) Synthesis and Modifications: A Review. Frontiers of Chemistry in China, 4, 259-264. https://doi.org/10.1007/s11458-009-0092-x
|
[53]
|
Bergström, J.S. and Hayman, D. (2015) An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Annals of Biomedical Engineering, 44, 330-340. https://doi.org/10.1007/s10439-015-1455-8
|
[54]
|
Liu, S., Wu, G., Zhang, X., Yu, J., Liu, M., Zhang, Y., et al. (2019) Degradation and Drug-Release Behavior of Polylactic Acid (PLA) Medical Suture Coating with Tea Polyphenol (TP)—Polycaprolactone (PCL)/Polyglycolide (PGA). Fibers and Polymers, 20, 229-235. https://doi.org/10.1007/s12221-019-8829-8
|
[55]
|
Wang, H., Wei, Q., Wang, X., Gao, W. and Zhao, X. (2008) Antibacterial Properties of PLA Nonwoven Medical Dressings Coated with Nanostructured Silver. Fibers and Polymers, 9, 556-560. https://doi.org/10.1007/s12221-008-0089-y
|
[56]
|
Feghali, E., Tauk, L., Ortiz, P., Vanbroekhoven, K. and Eevers, W. (2020) Catalytic Chemical Recycling of Biodegradable Polyesters. Polymer Degradation and Stability, 179, Article ID: 109241. https://doi.org/10.1016/j.polymdegradstab.2020.109241
|
[57]
|
Rezvani Ghomi, E.R., Khosravi, F., Saedi Ardahaei, A.S., Dai, Y., Neisiany, R.E., Foroughi, F., et al. (2021) The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 13, Article 1854. https://doi.org/10.3390/polym13111854
|
[58]
|
Rossi, V., Cleeve-Edwards, N., Lundquist, L., Schenker, U., Dubois, C., Humbert, S., et al. (2015) Life Cycle Assessment of End-Of-Life Options for Two Biodegradable Packaging Materials: Sound Application of the European Waste Hierarchy. Journal of Cleaner Production, 86, 132-145. https://doi.org/10.1016/j.jclepro.2014.08.049
|
[59]
|
Cosate de Andrade, M.F., Souza, P.M.S., Cavalett, O. and Morales, A.R. (2016) Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison between Chemical Recycling, Mechanical Recycling and Composting. Journal of Polymers and the Environment, 24, 372-384. https://doi.org/10.1007/s10924-016-0787-2
|
[60]
|
Mallet, B., Lamnawar, K. and Maazouz, A. (2013) Improvement of Blown Film Extrusion of Poly(Lactic Acid): Structure-Processing-Properties Relationships. Polymer Engineering & Science, 54, 840-857. https://doi.org/10.1002/pen.23610
|
[61]
|
Mistriotis, A., Briassoulis, D., Giannoulis, A. and D’Aquino, S. (2016) Design of Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging (EMAP) for Fresh Fruits and Vegetables by Using Micro-Perforated Poly-Lactic Acid (PLA) Films. Postharvest Biology and Technology, 111, 380-389. https://doi.org/10.1016/j.postharvbio.2015.09.022
|
[62]
|
Briassoulis, D., Mistriotis, A., Giannoulis, A. and Giannopoulos, D. (2013) Optimized Pla-Based EMAP Systems for Horticultural Produce Designed to Regulate the Targeted In-Package Atmosphere. Industrial Crops and Products, 48, 68-80. https://doi.org/10.1016/j.indcrop.2013.03.017
|
[63]
|
Valente, T.A.M., Silva, D.M., Gomes, P.S., Fernandes, M.H., Santos, J.D. and Sencadas, V. (2016) Effect of Sterilization Methods on Electrospun Poly(Lactic Acid) (PLA) Fiber Alignment for Biomedical Applications. ACS Applied Materials & Interfaces, 8, 3241-3249. https://doi.org/10.1021/acsami.5b10869
|
[64]
|
Standau, T., Nofar, M., Dörr, D., Ruckdäschel, H. and Altstädt, V. (2021) A Review on Multifunctional Epoxy-Based Joncryl® ADR Chain Extended Thermoplastics. Polymer Reviews, 62, 296-350. https://doi.org/10.1080/15583724.2021.1918710
|
[65]
|
Chang, B., Li, Y., Wang, W., Song, G., Lin, J., Murugadoss, V., et al. (2021) Impacts of Chain Extenders on Thermal Property, Degradation, and Rheological Performance of Poly(Butylene Adipate-Co-Terephthalate). Journal of Materials Research, 36, 3134-3144. https://doi.org/10.1557/s43578-021-00308-0
|
[66]
|
Song, H., Chen, X., Fan, J. and Xu, Q. (2019) Balanced Strength and Toughness Improvement in Polylactide (Pla)/Poly(1, 4-Cyclohexylene Dimethylene Terephthalate Glycol) (PCTG) Blends Using Various Compatibilizers. Iranian Polymer Journal, 28, 991-999. https://doi.org/10.1007/s13726-019-00763-x
|
[67]
|
Fine-Blend (2019) Chain Extender. https://www.fineblend.com.cn/index.php?m=content&c=index&a=show&catid=13&id=15
|
[68]
|
Diransa: Product Catalogue. https://www.diransa.com.ar/en/product-catalogue/
|
[69]
|
Jiafeng, L., Qin, Z., Tiantang, F., Li, G., Wuyou, Y., Zhongyong, F., et al. (2020) Crystallization and Biocompatibility Enhancement of 3d-Printed Poly(L-Lactide) Vascular Stents with Long Chain Branching Structures. CrystEngComm, 22, 728-739. https://doi.org/10.1039/c9ce01477b
|
[70]
|
Pilla, S., Kim, S.G., Auer, G.K., Gong, S. and Park, C.B. (2009) Microcellular Extrusion-Foaming of Polylactide with Chain‐Extender. Polymer Engineering & Science, 49, 1653-1660. https://doi.org/10.1002/pen.21385
|
[71]
|
Corre, Y., Duchet, J., Reignier, J. and Maazouz, A. (2011) Melt Strengthening of Poly (Lactic Acid) through Reactive Extrusion with Epoxy-Functionalized Chains. Rheologica Acta, 50, 613-629. https://doi.org/10.1007/s00397-011-0538-1
|
[72]
|
Mihai, M., Huneault, M.A. and Favis, B.D. (2009) Rheology and Extrusion Foaming of Chain‐branched Poly(Lactic Acid). Polymer Engineering & Science, 50, 629-642. https://doi.org/10.1002/pen.21561
|
[73]
|
Elhassan, A.S.M., Saeed, H.A.M., Eltahir, Y.A., Xia, Y.M. and Wang, Y.P. (2014) Modification of PLA with Chain Extender. Applied Mechanics and Materials, 716, 44-47. https://doi.org/10.4028/www.scientific.net/amm.716-717.44
|
[74]
|
Yousefzade, O., Jeddi, J., Franco, L., Puiggali, J. and Garmabi, H. (2020) Crystallization Kinetics of Chain Extended Poly(L-Lactide)s Having Different Molecular Structures. Materials Chemistry and Physics, 240, Article ID: 122217. https://doi.org/10.1016/j.matchemphys.2019.122217
|
[75]
|
Cailloux, J., Santana, O.O., Franco-Urquiza, E., Bou, J.J., Carrasco, F., Gamez-Perez, J., et al. (2013) Sheets of Branched Poly(Lactic Acid) Obtained by One Step Reactive Extrusion Calendering Process: Melt Rheology Analysis. Express Polymer Letters, 7, 304-318. https://doi.org/10.3144/expresspolymlett.2013.27
|
[76]
|
Cai, J., Liu, Z., Cao, B., Guan, X., Liu, S. and Zhao, J. (2020) Simultaneous Improvement of the Processability and Mechanical Properties of Polyamide-6 by Chain Extension in Extrusion. Industrial & Engineering Chemistry Research, 59, 14334-14343. https://doi.org/10.1021/acs.iecr.0c02022
|
[77]
|
Xanthos, M., Wan, C., Dhavalikar, R., Karayannidis, G. and Bikiaris, D. (2004) Identification of Rheological and Structural Characteristics of Foamable Poly(Ethylene Terephthalate) by Reactive Extrusion. Polymer International, 53, 1161-1168. https://doi.org/10.1002/pi.1526
|
[78]
|
Dong, W., Zou, B., Yan, Y., Ma, P. and Chen, M. (2013) Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/Poly(Butylene Adipate-Co-Terephthalate) Blends. International Journal of Molecular Sciences, 14, 20189-20203. https://doi.org/10.3390/ijms141020189
|
[79]
|
Wu, W., Sun, X., Chen, Q. and Qian, Q. (2022) Recycled Poly(Ethylene Terephthalate) from Waste Textiles with Improved Thermal and Rheological Properties by Chain Extension. Polymers, 14, Article 510. https://doi.org/10.3390/polym14030510
|
[80]
|
Ojijo, V. and Ray, S.S. (2015) Super Toughened Biodegradable Polylactide Blends with Non-Linear Copolymer Interfacial Architecture Obtained via Facile In-Situ Reactive Compatibilization. Polymer, 80, 1-17. https://doi.org/10.1016/j.polymer.2015.10.038
|
[81]
|
Al-Itry, R., Lamnawar, K. and Maazouz, A. (2014) Reactive Extrusion of PLA, PBAT with a Multi-Functional Epoxide: Physico-Chemical and Rheological Properties. European Polymer Journal, 58, 90-102. https://doi.org/10.1016/j.eurpolymj.2014.06.013
|
[82]
|
Eslami, H. and Kamal, M.R. (2012) Elongational Rheology of Biodegradable Poly(Lactic Acid)/Poly[(Butylene Succinate)-co-Adipate] Binary Blends and Poly(Lactic Acid)/Poly[(Butylene Succinate)-co-Adipate]/Clay Ternary Nanocomposites. Journal of Applied Polymer Science, 127, 2290-2306. https://doi.org/10.1002/app.37928
|
[83]
|
Karkhanis, S.S. and Matuana, L.M. (2019) Extrusion Blown Films of Poly(Lactic Acid) Chain-Extended with Food Grade Multifunctional Epoxies. Polymer Engineering & Science, 59, 2211-2219. https://doi.org/10.1002/pen.25224
|
[84]
|
Eslami, H. and Kamal, M.R. (2013) Effect of a Chain Extender on the Rheological and Mechanical Properties of Biodegradable Poly(Lactic Acid)/Poly[(Butylene Succinate)-Co-Adipate] Blends. Journal of Applied Polymer Science, 129, 2418-2428. https://doi.org/10.1002/app.38449
|
[85]
|
Zhang, Y., Zhang, C., Li, H., Du, Z. and Li, C. (2010) Chain Extension of Poly(Ethylene Terephthalate) with Bisphenol-A Dicyanate. Journal of Applied Polymer Science, 117, 2003-2008. https://doi.org/10.1002/app.32136
|
[86]
|
Chen, B., Shen, C., Chen, S. and Chen, A.F. (2010) Ductile PLA Modified with Methacryloyloxyalkyl Isocyanate Improves Mechanical Properties. Polymer, 51, 4667-4672. https://doi.org/10.1016/j.polymer.2010.08.028
|
[87]
|
Woo, S.I., Kim, B.O., Jun, H.S. and Chang, H.N. (1995) Polymerization of Aqueous Lactic Acid to Prepare High Molecular Weight Poly(Lactic Acid) by Chain-Extending with Hexamethylene Diisocyanate. Polymer Bulletin, 35, 415-421. https://doi.org/10.1007/bf00297606
|
[88]
|
Liu, C., Jia, Y. and He, A. (2013) Preparation of Higher Molecular Weight Poly (L-Lactic Acid) by Chain Extension. International Journal of Polymer Science, 2013, Article ID: 315917. https://doi.org/10.1155/2013/315917
|
[89]
|
Xie, Q., Liu, Z., Chen, J., Jing, B. and Zou, X. (2024) High Melt Viscosity, Low Yellowing, Strengthened and Toughened Biodegradable Polyglycolic Acid via Chain Extension of Aliphatic Diisocyanate and Epoxy Oligomer. Reactive and Functional Polymers, 200, Article ID: 105926. https://doi.org/10.1016/j.reactfunctpolym.2024.105926
|
[90]
|
Hao, Y., Li, Y., Liu, Z., Yan, X., Tong, Y. and Zhang, H. (2019) Thermal, Mechanical and Rheological Properties of Poly(Lactic Acid) Chain Extended with Polyaryl Polymethylene Isocyanate. Fibers and Polymers, 20, 1766-1773. https://doi.org/10.1007/s12221-019-8579-7
|
[91]
|
Tuna, B. and Ozkoc, G. (2016) Effects of Diisocyanate and Polymeric Epoxidized Chain Extenders on the Properties of Recycled Poly(Lactic Acid). Journal of Polymers and the Environment, 25, 983-993. https://doi.org/10.1007/s10924-016-0856-6
|
[92]
|
Bolognesi, C., Baur, X., Marczynski, B., Norppa, H., Sepai, O. and Sabbioni, G. (2001) Carcinogenic Risk of Toluene Diisocyanate and 4, 4’-Methylenediphenyl Diisocyanate: Epidemiological and Experimental Evidence. Critical Reviews in Toxicology, 31, 737-772. https://doi.org/10.1080/20014091111974
|
[93]
|
Mo, A., Liang, Y., Cao, X., Jiang, J., Liu, Y., Cao, X., et al. (2024) Polymer Chain Extenders Induce Significant Toxicity through DAF-16 and SKN-1 Pathways in Caenorhabditis Elegans: A Comparative Analysis. Journal of Hazardous Materials, 473, 134730. https://doi.org/10.1016/j.jhazmat.2024.134730
|
[94]
|
Himmelsbach, A., Gerschmann, L., Akdevelioğlu, Y., Nofar, M. and Ruckdäschel, H. (2024) Reaction Kinetics of Recycled Polyethylene Terephthalate with PMDA Chain Extender Analyzed by a Microcompounder. ACS Sustainable Chemistry & Engineering, 12, 4194-4202. https://doi.org/10.1021/acssuschemeng.3c07795
|
[95]
|
Yahyaee, N., Javadi, A., Garmabi, H. and Khaki, A. (2019) Effect of Two-Step Chain Extension Using Joncryl and PMDA on the Rheological Properties of Poly (Lactic Acid). Macromolecular Materials and Engineering, 305, Article ID: 1900423. https://doi.org/10.1002/mame.201900423
|
[96]
|
Yang, Z., Xin, C., Mughal, W., Li, X. and He, Y. (2017) High-Melt-Elasticity Poly(Ethylene Terephthalate) Produced by Reactive Extrusion with a Multi‐Functional Epoxide for Foaming. Journal of Applied Polymer Science, 135, Article ID: 45805. https://doi.org/10.1002/app.45805
|
[97]
|
Qu, M., Lu, D., Deng, H., Wu, Q., Han, L., Xie, Z., et al. (2021) A Comprehensive Study on Recycled and Virgin PET Melt-Spun Fibers Modified by PMDA Chain Extender. Materials Today Communications, 29, Article ID: 103013. https://doi.org/10.1016/j.mtcomm.2021.103013
|
[98]
|
Kruse, M. and Wagner, M.H. (2017) Rheological and Molecular Characterization of Long-Chain Branched Poly(Ethylene Terephthalate). Rheologica Acta, 56, 887-904. https://doi.org/10.1007/s00397-017-1043-y
|
[99]
|
Kruse, M., Wang, P., Shah, R.S. and Wagner, M.H. (2018) Analysis of High Melt‐strength Poly(Ethylene Terephthalate) Produced by Reactive Processing by Shear and Elongational Rheology. Polymer Engineering & Science, 59, 396-410. https://doi.org/10.1002/pen.24936
|
[100]
|
Dolatshah, S., Ahmadi, S., Ershad‐Langroudi, A. and Jashni, H. (2020) Rheological/Thermal Properties of Poly(Ethylene Terephthalate) Modified by Chain Extenders of Pyromellitic Dianhydride and Pentaerythritol. Journal of Applied Polymer Science, 138, Article ID: 49917. https://doi.org/10.1002/app.49917
|
[101]
|
Forsythe, J.S., Cheah, K., Nisbet, D.R., Gupta, R.K., Lau, A., Donovan, A.R., et al. (2006) Rheological Properties of High Melt Strength Poly(Ethylene Terephthalate) Formed by Reactive Extrusion. Journal of Applied Polymer Science, 100, 3646-3652. https://doi.org/10.1002/app.23166
|
[102]
|
Liu, J., Lou, L., Yu, W., Liao, R., Li, R. and Zhou, C. (2010) Long Chain Branching Polylactide: Structures and Properties. Polymer, 51, 5186-5197. https://doi.org/10.1016/j.polymer.2010.09.002
|
[103]
|
Inata, H. and Matsumura, S. (1987) Chain Extenders for Polyesters. IV. Properties of the Polyesters Chain-Extended by 2, 2’-Bis(2-Oxazoline). Journal of Applied Polymer Science, 33, 3069-3079. https://doi.org/10.1002/app.1987.070330838
|
[104]
|
Cardi, N., Po, R., Giannotta, G., Occhiello, E., Garbassi, F. and Messina, G. (1993) Chain Extension of Recycled Poly(Ethylene Terephthalate) with 2, 2’-Bis(2-Oxazoline). Journal of Applied Polymer Science, 50, 1501-1509. https://doi.org/10.1002/app.1993.070500903
|
[105]
|
Kylmä, J., Tuominen, J., Helminen, A. and Seppälä, J. (2001) Chain Extending of Lactic Acid Oligomers. Effect of 2, 2’-Bis(2-Oxazoline) on 1, 6-Hexamethylene Diisocyanate Linking Reaction. Polymer, 42, 3333-3343. https://doi.org/10.1016/s0032-3861(00)00751-5
|
[106]
|
Ge, Q. and Dou, Q. (2023) Preparation of Supertough Polylactide/Polybutylene Succinate/Epoxidized Soybean Oil Bio-Blends by Chain Extension. ACS Sustainable Chemistry & Engineering, 11, 9620-9629. https://doi.org/10.1021/acssuschemeng.3c01042
|
[107]
|
Tuominen, J., Kylmä, J. and Seppälä, J. (2002) Chain Extending of Lactic Acid Oligomers. 2. Increase of Molecular Weight with 1, 6-Hexamethylene Diisocyanate and 2, 2’-Bis(2-Oxazoline). Polymer, 43, 3-10. https://doi.org/10.1016/s0032-3861(01)00606-1
|
[108]
|
Karayannidis, G.P. and Psalida, E.A. (2000) Chain Extension of Recycled Poly(Ethylene Terephthalate) with 2, 2’-(1, 4-Phenylene)Bis(2-Oxazoline). Journal of Applied Polymer Science, 77, 2206-2211. https://doi.org/10.1002/1097-4628(20000906)77:10<2206::aid-app14>3.3.co;2-4
|
[109]
|
Akaradechakul, K., Chanthot, P., Kerddonfag, N. and Pattamaprom, C. (2022) The Effect of Polycarbodiimide Chain Extender on Thermal Stability and Mechanical Properties of Biobased Poly(Lactic Acid)/Natural Rubber Blown Films. Journal of Plastic Film & Sheeting, 38, 396-415. https://doi.org/10.1177/87560879211058679
|
[110]
|
Cicero, J.A., Dorgan, J.R., Dec, S.F. and Knauss, D.M. (2002) Phosphite Stabilization Effects on Two-Step Melt-Spun Fibers of Polylactide. Polymer Degradation and Stability, 78, 95-105. https://doi.org/10.1016/s0141-3910(02)00123-4
|
[111]
|
Najafi, N., Heuzey, M.C., Carreau, P.J. and Wood-Adams, P.M. (2012) Control of Thermal Degradation of Polylactide (PLA)-Clay Nanocomposites Using Chain Extenders. Polymer Degradation and Stability, 97, 554-565. https://doi.org/10.1016/j.polymdegradstab.2012.01.016
|
[112]
|
Najafi, N., Heuzey, M.C. and Carreau, P.J. (2012) Crystallization Behavior and Morphology of Polylactide and PLA/Clay Nanocomposites in the Presence of Chain Extenders. Polymer Engineering & Science, 53, 1053-1064. https://doi.org/10.1002/pen.23355
|
[113]
|
Meng, X., Shi, G., Chen, W., Wu, C., Xin, Z., Han, T., et al. (2015) Structure Effect of Phosphite on the Chain Extension in Pla. Polymer Degradation and Stability, 120, 283-289. https://doi.org/10.1016/j.polymdegradstab.2015.07.019
|
[114]
|
Zou, Z., Wei, X., Liao, M., Deng, L., Yao, J., Sun, L., et al. (2024) Effect of Polycarbodiimide, Epoxy Chain Extenders and Tannic Acid on the Hydrolysis and UV Resistance of Polylactic Acid. Reactive and Functional Polymers, 199, Article ID: 105894. https://doi.org/10.1016/j.reactfunctpolym.2024.105894
|
[115]
|
Rodríguez Hernández, B. and Lieske, A. (2024) Flexible PLA Copolymers with Low Melt Flow Index for Blown Film Applications. Chemie Ingenieur Technik, 96, 586-597. https://doi.org/10.1002/cite.202300150
|
[116]
|
Sirisinha, K. and Samana, K. (2020) Improvement of Melt Stability and Degradation Efficiency of Poly (Lactic Acid) by Using Phosphite. Journal of Applied Polymer Science, 138, Article ID: 49951. https://doi.org/10.1002/app.49951
|
[117]
|
Cavalcanti, F.N., Teófilo, E.T., Rabello, M.S. and Silva, S.M.L. (2007) Chain Extension and Degradation during Reactive Processing of PET in the Presence of Triphenyl Phosphite. Polymer Engineering & Science, 47, 2155-2163. https://doi.org/10.1002/pen.20912
|
[118]
|
Ming, M., Wang, L., Zhou, F. and Zhang, Y. (2022) The Influence of Chain Extender ADR and Nucleating Agent LAK on the Crystallization Behavior and Properties of PLLA/PBAT Blends. Materials for Mechanical Engineering, 46, 13-18.
|
[119]
|
Palsikowski, P.A., Kuchnier, C.N., Pinheiro, I.F. and Morales, A.R. (2017) Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 26, 330-341. https://doi.org/10.1007/s10924-017-0951-3
|
[120]
|
Freitas, A.L.P.D.L., Tonini Filho, L.R., Calvão, P.S. and Souza, A.M.C.D. (2017) Effect of Montmorillonite and Chain Extender on Rheological, Morphological and Biodegradation Behavior of PLA/PBAT Blends. Polymer Testing, 62, 189-195. https://doi.org/10.1016/j.polymertesting.2017.06.030
|
[121]
|
Ghalia, M.A. and Dahman, Y. (2017) Investigating the Effect of Multi-Functional Chain Extenders on PLA/PEG Copolymer Properties. International Journal of Biological Macromolecules, 95, 494-504. https://doi.org/10.1016/j.ijbiomac.2016.11.003
|
[122]
|
Bumrungnok, K. and Threepopnatkul, P. (2023) Development of Active PLA/Peg-Blended Film with Grape Seed Extract for Straw Mushroom Shelf Life Extension. Macromolecular Research, 31, 193-211. https://doi.org/10.1007/s13233-023-00133-w
|
[123]
|
Aversa, C., Barletta, M., Cappiello, G. and Gisario, A. (2022) Compatibilization Strategies and Analysis of Morphological Features of Poly(Butylene Adipate-Co-Terephthalate) (PBAT)/Poly(Lactic Acid) PLA Blends: A State-of-Art Review. European Polymer Journal, 173, Article ID: 111304. https://doi.org/10.1016/j.eurpolymj.2022.111304
|
[124]
|
Lu, X., Zhao, J., Yang, X. and Xiao, P. (2017) Morphology and Properties of Biodegradable Poly (Lactic Acid)/Poly (Butylene Adipate-Co-Terephthalate) Blends with Different Viscosity Ratio. Polymer Testing, 60, 58-67. https://doi.org/10.1016/j.polymertesting.2017.03.008
|
[125]
|
Arruda, L.C., Magaton, M., Bretas, R.E.S. and Ueki, M.M. (2015) Influence of Chain Extender on Mechanical, Thermal and Morphological Properties of Blown Films of PLA/PBAT Blends. Polymer Testing, 43, 27-37. https://doi.org/10.1016/j.polymertesting.2015.02.005
|
[126]
|
Wu, N. and Zhang, H. (2017) Mechanical Properties and Phase Morphology of Super-Tough PLA/PBAT/EMA-GMA Multicomponent Blends. Materials Letters, 192, 17-20. https://doi.org/10.1016/j.matlet.2017.01.063
|
[127]
|
Fernández‐Tena, A., Otaegi, I., Irusta, L., Sebastián, V., Guerrica‐Echevarria, G., Müller, A.J., et al. (2023) High‐impact PLA in Compatibilized PLA/PCL Blends: Optimization of Blend Composition and Type and Content of Compatibilizer. Macromolecular Materials and Engineering, 308, Article ID: 2300213. https://doi.org/10.1002/mame.202300213
|
[128]
|
Hou, A. and Qu, J. (2019) Super-Toughened Poly(Lactic Acid) with Poly(ε-Caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending. Polymers, 11, Article 771. https://doi.org/10.3390/polym11050771
|
[129]
|
Zhou, M., Zhou, P., Xiong, P., Qian, X. and Zheng, H. (2015) Crystallization, Rheology and Foam Morphology of Branched PLA Prepared by Novel Type of Chain Extender. Macromolecular Research, 23, 231-236. https://doi.org/10.1007/s13233-015-3018-0
|
[130]
|
Corre, Y., Maazouz, A., Reignier, J. and Duchet, J. (2013) Influence of the Chain Extension on the Crystallization Behavior of Polylactide. Polymer Engineering & Science, 54, 616-625. https://doi.org/10.1002/pen.23595
|
[131]
|
Nofar, M., Zhu, W., Park, C.B. and Randall, J. (2011) Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide. Industrial & Engineering Chemistry Research, 50, 13789-13798. https://doi.org/10.1021/ie2011966
|
[132]
|
Hung, C., Wang, C. and Chen, C. (2013) Enhanced the Thermal Stability and Crystallinity of Polylactic Acid (PLA) by Incorporated Reactive PS-b-PMMA-b-PGMA and Ps-b-PGMA Block Copolymers as Chain Extenders. Polymer, 54, 1860-1866. https://doi.org/10.1016/j.polymer.2013.01.045
|
[133]
|
Piemonte, V. and Gironi, F. (2012) Kinetics of Hydrolytic Degradation of PLA. Journal of Polymers and the Environment, 21, 313-318. https://doi.org/10.1007/s10924-012-0547-x
|
[134]
|
Chen, W., Feng, Z., Chang, Y., Xu, S., Zhou, K., Shi, X., et al. (2023) Comparing the Bacterial Composition, Succession and Assembly Patterns in Plastisphere and Kitchen Waste Composting with PLA/PBAT Blends. Journal of Hazardous Materials, 454, Article ID: 131405. https://doi.org/10.1016/j.jhazmat.2023.131405
|
[135]
|
Wu, Y., Gao, X., Wu, J., Zhou, T., Nguyen, T.T. and Wang, Y. (2023) Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. Polymers, 15, Article 3096. https://doi.org/10.3390/polym15143096
|