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Abstract 
Amid the escalating plastic pollution issue, the development of biodegradable 
and recyclable polymeric materials has become a focus within the scientific 
community. Chain extenders, which are an important class of compounds, fa-
cilitate the elongation of polymer chains through reactive functional groups, 
thereby enhancing the performance of the materials. Epoxy-based chain ex-
tenders, due to their cost-effectiveness, low toxicity, high reaction efficiency, 
and effective reactivity with hydroxyl and carboxyl groups, have emerged as a 
promising class of chain extenders. This manuscript comprehensively elabo-
rates on the varieties, structural characteristics, and performance of chain ex-
tenders, the challenges they face, and the methods for their modification. Spe-
cial emphasis is placed on the application of epoxy-based chain extenders in 
biodegradable polymers, such as polylactic acid (PLA), and their subsequent 
influence on the structural and performance properties of these materials. 
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1. Introduction 

Polymer materials, especially plastics, play an important role in multiple fields 
such as packaging, home appliances and building materials due to their ad-
vantages of light weight, ease of processing and cost-effectiveness. [1] Neverthe-
less, the extensive use of these materials has led to serious environmental issues. 
Disposable plastic products, such as straws, tableware, cups and bags, which can 
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hardly be recycled owing to their lightweight nature, have become a focus of social 
concern. According to statistics, in 2020, China’s output of primary plastics ex-
ceeded 100 million tons, while the global recycling rate of plastic products is only 
9%. A large amount of wasted plastics eventually pile up in landfills or enter the 
natural environment, causing soil damage, water pollution and ecological im-
pacts, and even threatening human health. [2]  

The impact of plastic pollution on the environment and living organisms has 
drawn global attention. [3]-[10] Microplastic particles may potentially enter the 
human body via the food chain. Meanwhile, the slow degradation of plastic waste 
results in the accumulation of persistent organic pollutants in the environment. 
Additionally, carbon dioxide emissions during the production of plastics and the 
depletion of fossil resources are also serious issues that the industry is confronted 
with. [11]-[15] Under the Framework Convention on Climate Change, the United 
Nations has proposed the “Race to Zero” strategy. However, the situation regard-
ing achieving this goal remains challenging. [16]-[22]  

To address these challenges, academia and industry are exploring two main so-
lution approaches. The first is the concept of circular economy, which aims to 
improve resource utilization efficiency through reduction, reuse, and recycling. 
For example, the European Union, the United States, South Korea, China, and 
Japan have issued various regulations on handling plastic waste to improve recy-
cling efficiency. [23]-[29] For the traditional recycling method, such as re-extru-
sion, impurities such as moisture and cleaning solution introduced during the 
cleaning process may cause the degradation of polymers and a drop in viscosity 
after high-temperature shearing and melting. The mechanical properties of poly-
mers are directly correlated with molecular weight. A decline in molecular weight 
leads to the deterioration of mechanical properties. Eventually, the recycled plastic 
products fail to meet the usage standards and thus cannot be reused. [30]-[33] To 
address this issue, researchers have attempted to inhibit the degradation and en-
hance the performance of recycled plastics by applying chain extenders. [34]-[39] 
Through this particular approach, recycled plastics can be effectively redirected 
and reused in the production of plastic products, thereby reducing the need for 
new plastic production. Specifically, the production of 1 kg of traditional plastics, 
such as polyethylene, requires approximately 73 to 81 MJ of energy and results in 
2.5 to 3 kg of CO2 equivalent emissions. [40] Replacing new plastics with recycled 
ones avoids excessive energy consumption and CO2 emissions, thus realizing the 
benefits of environmental protection and cost reduction. Particularly, it was esti-
mated that recycling could reduce the environmental impacts caused by fossil fuel 
depletion by 40% to 60%. [41]  

Another approach is to develop degradable polymers to achieve an environ-
mentally friendly substitution for plastics. [42]-[47] As a biodegradable material, 
polylactic acid (PLA) has attracted attention due to its good optical, mechanical, 
thermal and barrier properties. [48]-[55] In industry, PLA has been produced in 
large quantities. According to statistics, in 2015, the production of PLA reached 

https://doi.org/10.4236/msce.2025.131003


H. Duan et al. 
 

 

DOI: 10.4236/msce.2025.131003 22 Journal of Materials Science and Chemical Engineering 
 

0.2 million tons, and by 2019, it had increased to 0.3 million tons. This figure has 
continued to grow in recent years. [56] PLA is manufactured from lactic acid, 
which is obtained through the fermentation of starch found in sugarcane and 
corn. It takes approximately 28 MJ of energy to produce 1 kg of PLA, and 1.8 kg 
of CO2 is emitted. [57] Without considering the biodegradability of PLA, the en-
ergy required for its production and the greenhouse gas emissions are much lower 
than those of traditional plastics. Additionally, its demand for non-renewable en-
ergy is also considerably less. The end-of-life (EoL) options for PLA include land-
filling, composting, and recycling. The landfilling of PLA products exerts a com-
paratively minor influence on the environment. Merely 1% of it will be decom-
posed after a span of 100 years, and the CH4 generation is less than 0.1%, accom-
panied by negligible CO2 emissions. [58] The composting process of PLA products 
is generally regarded as one of the worst EoL options due to the lack of energy 
recovery and low compost quality. [59] Recycling, on the other hand, is the most 
promising EoL option for PLA, which can significantly reduce CO2 emissions and 
environmental problems. [60] Nevertheless, regardless of whether it is virgin or 
recycled PLA, only the high molecular weight PLA possesses commercial value 
within industries like fiber, textile, plastics, and packaging. [61]-[63] Therefore, 
enhancing the molecular weight of PLA to improve its comprehensive properties 
is a hot topic in current research and using chain extenders is one of the most 
promising ways to solve this problem.  

Chain extension is an effective chemical modification approach. Compared 
with solid-state polycondensation, it is not only more effective in increasing mo-
lecular weight but also simple to operate, with milder reaction conditions that are 
easy to regulate. Epoxy-based chain extenders represent a class of promising chain 
extenders due to their broad availability, low cost, safety and non-toxicity. They 
are capable of improving the viscoelasticity, thermal stability, melt strength and 
processability of PLA-based materials. Moreover, they contribute to the blending 
modification, enhancing capacity and functionalizing of PLA, and even in its re-
cycling. [64]-[69] 

This manuscript comprehensively introduces the structure, performance, chal-
lenges faced and modification approaches of chain extenders, and discusses the 
development and application of degradable materials. Future research may focus 
on exploring the relationship between the structure and performance of chain ex-
tenders, optimizing the chain extension process and developing new degradable 
polymers to achieve an environmentally friendly substitution and recycling of 
plastic materials. This requires not only the efforts of researchers but also the joint 
participation of policymakers, industry, and consumers. Through interdiscipli-
nary cooperation and innovation, the sustainable development of plastic materials 
and the solution to environmental problems can be promoted. 

2. Categories of Chain Extenders 

In terms of the chemical structure of chain extenders, there are usually multiple 

https://doi.org/10.4236/msce.2025.131003


H. Duan et al. 
 

 

DOI: 10.4236/msce.2025.131003 23 Journal of Materials Science and Chemical Engineering 
 

reactive functional groups on a single molecular chain. Through the reaction of 
these reactive functional groups with the active groups in polymer materials (usu-
ally end groups), the molecular chains of the target polymer are promoted to ex-
tend and expand. The common chain extenders applicable to PLA include epoxy-, 
isocyanate-, anhydride- and oxazoline-based chain extenders. The following sec-
tions will present a detailed introduction to each of them. 

2.1. Epoxy-Based Chain Extenders 

As one of the most common functional groups in chain extenders, the epoxy 
group has unique chemical properties and reactivity. It can react with hydroxyl, 
carboxyl and amino groups in polymers through ring opening to form new chem-
ical bonds, thereby increasing their molecular weight, mechanical properties and 
processability. Owing to their cost-effectiveness, low toxicity and high reaction 
efficiency, epoxy-based chain extenders have a broad application prospect in pol-
ymer modification and are currently the most commercially mature systems. [64]-
[69] In Figure 1, the chain extension reactions of the epoxy-based chain extenders 
with the carboxyl and amino groups are illustrated. 
 

 
Figure 1. Chain extension reactions based on epoxy groups. [64] 
 

The incorporation of chain extenders has a remarkable impact on the properties 
of polymers. Pilla et al. employed the epoxy-based chain extender (Joncryl® series) 
to enhance the extrusion and injection foamability of PLA. The addition of the 
epoxy-based chain extender significantly increased the molecular weight of PLA, 
but decreased its crystallinity. [70] CORRE et al. incorporated the epoxy-based 
chain extender into PLA during the reactive extrusion. Upon chain extension, the 
enhancement in the melt rheology of the modified materials in terms of melt 
strength and thermal stability during stretching and shearing has been observed. 
[71] Mihai et al. fabricated branched PLA with the epoxy-based chain extender. 
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This enhanced the shear viscosity and melt elasticity and, crucially, induced 
strain-hardening during uniaxial deformation in the molten state. [72] According 
to Elhassan et al., the capping and connecting of the epoxy-based chain extender 
into PLA led to significant improvement in tensile strength and modulus. [73] 
Yousefzade et al. studied the impact of the epoxy-based chain extender on the 
crystallization rate of PLA. A high percentage of the epoxy-based chain extender 
promoted primary nucleation and increased the overall crystallization rate con-
stant. [74] Cailloux et al. demonstrated that the reaction selectivity between epoxy 
groups and carboxyl groups was greater than that between epoxy and hydroxyl 
groups, owing to higher polarity. [75] In addition, Cai et al. investigated the chain-
extending effect of a small-molecule epoxy-based chain extender on polyamide 6 
(PA6). The addition of such an epoxy chain extender in the process of melt extru-
sion enabled the shear viscosity of PA6 to decrease by 52.2%, while simultaneously 
increasing the notched impact strength from 62.4 J/m to 105.9 J/m. [76] These 
findings provide definite directions for the application of epoxy chain extenders.  

The chain-extending effect of the epoxy-based chain extenders is directly re-
lated to their functionality. Xanthos et al. compared the chain-extending effects of 
multifunctional anhydride- and epoxy-based chain extenders on polyethylene ter-
ephthalate (PET). Pyromellitic dianhydride, tetrafunctional and trifunctional 
epoxide exhibited strong reactivity. These modifiers could not only increase the 
molecular weight but also enhance the mechanical properties and processability 
of the material. [77] Dong et al. found that multi-epoxy functional chain extenders 
can effectively improve the compatibility and reduce the interfacial tension be-
tween PLA and PBAT. Chain extenders with a higher epoxy functionality have 
higher reaction efficiency. With a 1 wt% addition of the chain extender having 9 
epoxy groups in its structure, the average PBAT phase size was reduced to 0.5 µm. 
While for the other chain extender with 2 epoxy groups in its structure, it was 
reduced to only 1 µm. [78] 

The functionality of the chain extender also influences the structure of the pol-
ymer. Wu et al. that chain extenders with higher epoxy functionality tended to react 
with the carboxyl group of the oligomers, leading to the formation of branched struc-
tures in addition to linear growth. Polymers modified by bi-epoxy functional 
chain extenders exhibited a linear structure and desirable rheological properties, 
while polymers modified by multi-epoxy functional chain extenders had long-
chain branched structures and better crystallinity, e.g., a higher crystallization 
rate. The higher the epoxy functionality of the chain extender is, the higher the 
level of branched structures of the polymer after chain extension will be. Moreo-
ver, the branched polymers show a higher shear thinning sensitivity, which is ben-
eficial for large-scale processing and production. [79] [80] According to Eslami et 
al., incorporating the epoxy-based, multifunctional chain extender into the biode-
gradable PLA/PBSA blends led to the formation of a long-chain branched topol-
ogy and an increase in molecular weight and viscosity. The appearance of both 
linear and randomly branched structures improved the melt strength and strain 
hardening of the material, which consequently enhanced its processability and 
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inhibited its thermal degradation. [81]-[84] The growth of melt strength facilitates 
post-processing, such as film blowing and extrusion, which is of significant sig-
nificance for the expansion of PLA applications.  

Table 1 presents a compilation of commercially available epoxy-based chain 
extenders. [64]-[68] Examination of the data reveals that the majority of these 
epoxy-based chain extenders possess relatively low molecular weights. In an effort 
to overcome the limitations associated with the chain extension efficiency of tra-
ditional small molecule epoxy chain extenders, Li et al. have employed a secondary 
chain extension strategy. This approach involves the utilization of small molecule 
chain extenders with distinct structural features and the implementation of mul-
tiple chain extension reactions. Consequently, this methodology has resulted in a 
pronounced alteration in the structure of PLA, characterized by an increase in 
molecular weight and the formation of an extensive network of long-chain 
branching. These changes have been correlated with an enhancement in storage 
modulus and complex viscosity, which subsequently influence the crystalline 
structure. The alterations in crystalline morphology are evidenced by reduced 
spherulite sizes and increased crystallinity, culminating in a marked improvement 
in tensile strength and modulus. [69] However, the complexity of this approach 
may present challenges for its adoption in industrial-scale applications. 
 

Table 1. Commercial epoxy chain extenders [64]-[68]. 

Model Specification Epoxy equivalent Mw Appearance 

Joncryl® 
ADR 4468 
ADR 4368 
ADR 4370 

285 - 320 6800 - 7300 Powder/Flake 

Ever Sun X-U993 −280 - 310 6500 - 7200 Powder 

Shanxi Chemical Industry KL-E4370 270 - 300 6500 - 7000 Powder 

Bio-Master® HPC-3510/P 280 - 310 −50000 Powder/Particle 

Eco-Batch® 
Eco-1180 280 - 310 40,000 - 60,000 

Powder/Particle 
Eco-1120 450 - 600 50,000 - 80,000 

Thyosil 
CXP-5045 −450 −7000 Powder 

CXP-5030 −285 −7000 Powder 

2.2. Isocyanate-Based Chain Extenders 

Isocyanates (NCO) are a class of highly reactive compounds, which are able to 
interact with various functional groups, such as hydroxyl, carboxyl and amino 
groups. Isocyanates-based chain extenders also play an important role in polymer 
modification. For instance, the application of isocyanate-based chain extenders 
can effectively increase the viscosity, energy storage modulus and molecular 
weight of recycled PET and transform PET from a brittle material into a ductile 
one. [85] [86] They can also be utilized in biodegradable materials like PLA. 
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Through reacting with the end groups of PLA, ester-polyurethane linkages are 
formed, as illustrated in Figure 2. This process leads to an increase in molecular 
weight and an enhancement of mechanical properties. In addition, the branched 
or cross-linked structures generated in this process may lead to an increase in the 
glass transition temperature of the material. [87]-[90] Tuna et al. compared the 
chain-extending effects of 1,4-phenylene diisocynate (PDI) and the epoxy-based 
chain extender (Joncryl® series) on recycled PLA, and both were found to be ef-
fective. The viscosity of PLA experienced a more rapid increase when PDI was 
incorporated than when the epoxy-based chain extender was added. This was 
attributable to the higher reactivity of isocyanate. However, an overly high re-
action rate led to the PDI being consumed too quickly during processing. In the 
absence of PDI for a long time, the thermomechanical effect caused chain scis-
sion and thus a reduction in molecular weight. In contrast, the epoxy-based 
chain extender enabled PLA to remain in a high-temperature processing state 
for a longer period. [91] Although isocyanate-based chain extenders show effi-
cient reactivity, their use may lead to the discoloration of the product and may 
produce toxic or potentially carcinogenic degradation products, which restricts 
their application. [92] Research has indicated that isocyanate-based chain ex-
tenders, with hexamethylene diisocyanate (HDI) and diphenylmethane diisocy-
anate (MDI) in particular, possess stronger toxicity in contrast to other types of 
chain extenders like anhydride-based, phosphite-based, and oxazolidine-based 
ones. These substances are capable of impeding the growth of organisms, reduc-
ing their lifespan, and triggering locomotor impairments, neuronal damage, as 
well as reproductive deficiencies. [93] Consequently, it is essential to carry out 
more rigorous environmental safety evaluations regarding the application of 
such chain extenders. 
 

 
Figure 2. Chain extension reactions of PLA by using isocyanate-based chain extender. [88] 
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2.3. Anhydride-Based Chain Extenders 

Anhydride-based chain extenders, such as homophthalic tetracarboxylic acid di-
anhydride (PMDA), are essential in the field of polymer modification due to their 
high reactivity and high functional group content. These chain extenders are ca-
pable of reacting with the hydroxyl groups of polymers, such as polylactic acid 
(PLA), through the ring-opening reaction of the anhydride group to promote 
chain extension and thus improve the melt strength. The concentration of anhy-
dride-based chain extenders, processing temperature, and reaction time have a 
significant influence on the material properties. Studies have demonstrated that 
with the increasing PMDA concentration, the chain extension reaction rate of 
PET actually decreases. This phenomenon can be explained by the reaction mech-
anism of PMDA, as shown in Figure 3. At a high PMDA content, the ring-opening 
of the anhydride functional groups forms more carboxylic acid groups. The gen-
erated carboxylic acid groups may react with the end group of the PET, known as 
the slower second reaction step, which competes with the first step. Consequently, 
the overall chain extension reaction rate is reduced. [94] 
 

 
Figure 3. Chain extension reactions of a polyester by using an anhydride-based chain 
extender. [94] 
 

Polymers modified by anhydride-based chain extenders exhibit excellent phys-
ical properties. For example, PET, after being chain-extended by PMDA shows 
significantly increased viscosity, storage modulus and molecular weight, while im-
proving the toughness of the material. [95] In biodegradable materials such as 
PLA, the application of anhydride-based chain extenders has also been widely 
studied. By generating carboxyl groups through the ring-opening reaction of 
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anhydride, the reaction between PLA and the epoxy group can be promoted. As a 
result, the molecular weight and heat resistance of PLA can be significantly en-
hanced. [96]-[102] However, the application of anhydride-based chain extenders 
in large-scale production is restricted because of the complexity of the two-step 
chain extension reaction. Hence, researchers are seeking more efficient and cost-
effective approaches to realize the extensive application of anhydride-based chain 
extenders in industrial production. For instance, Yahyaee et al. simultaneously 
incorporated two chain extenders, namely Joncryl® series and PMDA, into PLA. 
The intention of adding PMDA was to increase the number of carboxyl groups by 
means of the anhydride ring-opening reaction. In comparison with hydroxyl 
groups, epoxy groups exhibit a greater preference for reacting with carboxyl 
groups. Hence, the reaction between PLA and the epoxy chain extender could be 
more easily facilitated. The PLA extended with both chain extenders demon-
strated a synergistic enhancement in shear rheological characteristics and elonga-
tional rheological properties, owing to the longer segments between the branching 
points within their structure. [95] 

2.4. Oxazoline-Based Chain Extenders 

Oxazoline, a five-membered heterocyclic compound containing nitrogen and ox-
ygen, exhibits remarkable application prospects in the area of polymer chain ex-
pansion owing to its high reactivity and rapid reaction rate. It realizes the chain 
extension by forming an ester-amide bond with the carboxyl group through ring-
opening reaction. In this process, no small molecule by-products are generated, 
making it an ideal choice as a chain extender. Inata et al. proposed the reaction 
mechanism of oxazoline with carboxyl groups, namely coupling and blocking, as 
depicted in Figure 4. Moreover, oxazoline has a higher reaction efficiency with 
carboxyl groups than with hydroxyl groups. [103]-[106] 

 

 
Figure 4. Chain extension reactions based on oxazoline. [106] 
 

According to Kylmä et al., in case all the polymer ends are hydroxyl groups, 
applying 1,6-hexamethylene diisocyanate (HMDI) as the chain extender yields re-
markable chain-extending effect and can effectively increase the molecular weight. 
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Whereas, when the polymers are entirely terminated with carboxyl groups, the 
addition of oxazoline-based chain extenders can not only reduce the acid value of 
the polymers but also perform chain extension. If both hydroxyl and carboxyl 
groups are present at the end of the polymers, a better chain-extending effect can 
be obtained by using HMDI and oxazoline-based chain extenders in combination, 
as shown in Figure 5. [105]-[108]  
 

 
Figure 5. Chain extension reactions of poly(lactic acid) by using the oxazoline-based chain 
extender. [107] 
 

Although oxazoline-based chain extenders demonstrate outstanding perfor-
mance in improving polymer properties, they also suffer from the problems of 
high price and limited variety of derivatives, which restrict their widespread ap-
plication. Therefore, the development of novel oxazoline derivatives, reduction of 
costs, and exploration of the applications of oxazoline in other polymer systems 
will become hot spots for the future research. 

2.5. Other Chain-Extenders 

Other chain extenders that can be applied to PLA include polycarbodiimide 
(PCDI) and tris (nonylphenyl) phosphate (TNPP). Polycarbodiimide (PCDI) is 
frequently employed as an anti-hydrolysis inhibitor since it reacts with moisture 
or water to prevent hydrolysis. PCDI is also capable of extending the PLA chains, 
as it is able to react with both hydroxyl and carboxyl groups, and exhibits a par-
ticularly higher reactivity towards carboxyl groups. [109] In several investigations, 
TNPP was incorporated into PLA as a chain extender. [110]-[113] According to 
Cicero et al., the molecular weight of PLA underwent a 30% reduction after extru-
sion. However, following the addition of TNPP, the molecular weight of PLA was 
maintained in a stable condition. [110] The chemical structures of PCDI and 
TNPP are shown in Figure 6. 
 

 
Figure 6. Chemical structure of a) polycarbodiimide (PCDI) and b) tris (nonylphenyl) 
phosphate (TNPP). 
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Different chain extenders have diverse impacts on the polymer crystallization 
rate and crystallinity because of the changes in molecular structure and compati-
bility following the chain extension. [112]-[117] The addition of TNPP results in 
a remarkable increase in crystallization rate and crystallinity of the polymer. How-
ever, excessive concentrations of TNPP have a negative impact on the crystalliza-
tion behavior, and the residual by-products are susceptible to chemical degrada-
tion during storage. The application of PCDI leads to an increase in the cold crys-
tallization temperature (Tc) but a decline in crystallinity of PLA. In the case of the 
epoxy-based chain extenders (Joncryl® series), as mentioned earlier, their incor-
poration leads to the formation of long-chain branching structures, which dis-
rupts chain stacking. Consequently, the crystallinity is drastically reduced and the 
rate of crystallization may also decrease. Nevertheless, the chain-extending effect 
of epoxy-based chain extenders on PLA is remarkably superior to that of TNPP 
and PCDI. The enhancement in the molecular weight of PLA achieved by epoxy 
chain extenders is nearly several times greater than TNPP and PCDI. [111] [112] 

3. Regulation of the Structure and Properties of Materials by  
Using Epoxy-Based Chain Extenders 

Chain extenders are highly effective in improving the molecular weight of poly-
mers. Due to chemical reactions, they may also exert an influence on the structure 
and other properties of the material. Among all the chain extenders mentioned 
above, epoxy-based chain extenders have the best overall performance, as they are 
cost effective, have low toxicity, possess high reaction efficiency and show effective 
reactivity with hydroxyl and carboxyl groups. Hence, they are currently the most 
commercially successful chain extenders on the market, which can effectively be 
applied to PLA. [64]-[68] The following sections will mainly introduce the impact 
of epoxy-based chain extenders on the properties of PLA or its alloys. 

3.1. Impact of Epoxy-Based Chain Extenders on the Compatibility  
of PLA Alloys 

Biodegradable polymers such as PLA have relatively few individual applications 
in industry due to the limitations of their own physical properties. However, the 
blending modification of different biodegradable materials has emerged as an im-
portant research trend. Reactive compatibilization is an extremely cost-effective 
and environmentally friendly processing technique as it is free of solvents, does 
not demand special facilities, and can be readily scaled up for industrial produc-
tion. Epoxy-based chain extenders are highly reactive with the majority of biode-
gradable materials and can be utilized to enhance the compatibility of blended 
systems by means of in-situ compatibilization. 

Regarding the blending modification of PLA, PLA/polybutylene terephthalate 
(PBAT) alloys have attracted much attention due to their capacity to improve the 
toughness of PLA. Nevertheless, due to the huge difference in solubility parame-
ters between PLA (10.1 (cal/cm3)1/2) and PBAT (23.0 (cal/cm3)1/2), which leads to 
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a typical incompatible system between them, the properties of the materials ob-
tained by simple melt blending are not satisfactory. The application of epoxy-
based chain extenders on the PLA/PBAT blends reduces the interfacial tension, 
enhances the interfacial adhesion, minimizes the size of the dispersed phase, and 
forms a more homogeneous morphology. As the compatibility between PLA/PBAT 
blends improves, the material’s properties are enhanced in all aspects, which is 
conducive to further processing, molding, and application. [79]-[81] [118]-[120] 
Similar results have been reported by other researchers, where the incorporation 
of epoxy-based chain extenders improves the compatibility and mechanical prop-
erties of PLA/polyethylene glycol (PEG) blends. [121] [122]  

Phase morphology has a significant impact on the properties of PLA/PBAT 
blends. The formation of blend morphology relies on extrinsic factors like viscos-
ity ratio, shearing force, and temperature during melt processing. [123] [124] Ar-
roda et al. investigated the relationship between viscosity ratio and morphology 
of PLA/PBAT blends in the form of blown films. They noted that PLA-g-PBAT 
copolymers, which were formed during the chain extension, could improve the 
compatibility of PLA and PBAT. In PBAT-dominated systems, the dispersed 
phase of PLA was fibrillar and elongated along the tensile direction in the absence 
of a chain extender, whereas the addition of a chain extender refined the morphol-
ogy of PLA, which could be explained by the reduction of interfacial tension. In 
case the viscosity ratio > 1, the PLA dispersed phase appeared as ellipsoids ori-
ented towards the film drawing direction. The rigid PLA particles became stress 
concentrators, which reduced the elongation at the break of the system. In the 
PLA-dominated systems, without the presence of chain extenders, the PBAT dis-
persed phase exhibited a coarse ribbon-like or sheet-like structure. The low adhe-
sion to the PLA matrix resulted in the reduction of its ductility. As the chain ex-
tender was applied, however, finer and more homogeneous morphology and elon-
gated fibrous structure were formed due to lower interfacial tension and viscosity 
ratio < 1, which led to a significant increase in ductility. [125] 

The epoxy chain extender used in most studies was the Joncryl® series. In contrast, 
Wu et al. employed EMA-GMA as a chain-expanding compatibilizer in the 
PLA/PBAT blends system. At a high addition level, the interfacial adhesion was re-
markably enhanced, forming a morphology similar to a core-shell structure, which 
substantially enhanced the impact strength. [126] Similar conclusions were reached 
by Hou et al., in different concentrations and structures of epoxy-based chain ex-
tenders significantly affected the morphology and properties of the PLA/polycapro-
lactone (PCL) blends. Through the chemical reaction between the epoxy groups of 
EMA-GMA and the terminal carboxyl and hydroxyl groups of PLA and PCL, the 
compatibilizer acted as a bridge between the phases to improve the interfacial adhe-
sion. By this means, adding 10 wt% of PCL to PLA increased the elongation at break 
up to 172% and the ductility continued to grow with further addition of PCL. [127] 
[128] Compared with the Joncryl® series, EMA-GMA has higher molecular weight. 
Despite the lower GMA content, its higher molecular weight and cohesive strength 
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are conducive to the enhancement of the interfacial adhesion, thus further improv-
ing the morphology and properties of the blended system. 

3.2. Impact of Epoxy-Based Chain Extenders on the Crystallization  
Behavior 

During the chain extension of PLA, epoxy-based chain extenders not only lead to 
the linear growth of PLA, but also accompanied by the generation of branched struc-
tures. [78] On one hand, branched structures reduce the regularity of molecular 
chains. On the other hand, as chain length and chain linkage increase, under the 
same crystallization conditions, the melt viscosity rises. This restricts the movement 
of chain segments, making it difficult for them to form a highly ordered lattice 
through regular arrangement. However, the enrichment of chain segments around 
the branched structures is beneficial for the nucleation. An increase in the volume 
fraction of branched structures leads to a significant increase in the nucleation den-
sity of the polymer. Therefore, the chain-extended and branched PLA is more likely 
to form primary nuclei than linear PLA, thus causing a complex impact on the crys-
tallization behavior. [129] Corre et al. noted that the increase in the epoxy-based 
chain extender content led to the decrease in the cold crystallization temperature 
(Tcc) and melting temperature (Tm). The crystallization rate of the chain-extended 
PLA was increased, but the crystallinity decreased. [130] Nofar et al. investigated the 
crystallization behavior of long-chain-branched PLA and found that the branched 
PLA possessed a more rapid crystallization rate compared to linear PLA. This is 
because the branched chains can serve as nucleation sites. Similarly, adding nucle-
ating agents, such as talc, to linear PLA had the function of promoting the crystal-
linity and crystallization rate. However, they had less influence on the crystallinity 
and crystallization rate of the branched PLA, suggesting that in this case the 
branched structures dominated the crystallization process. In addition, the micro-
structure of branched PLA exhibited a smaller spherulite size. [131] 

Hung et al. investigated the influence of the reactive block copolymers as chain 
extenders on the crystallization behavior of PLA. They noted that the GMA chain 
segments were able to enhance the molecular weight and melt strength of PLA, 
while the MMA and styrene chain segments improved the miscibility with PLA 
and act as nucleating agents to promote crystallization. In particular, the applica-
tion of chain extenders containing MMA chain segments led to an increase in the 
crystallinity of PLA from 12.29% to 47.54%. In contrast, chain extenders without 
MMA chain segments did not exhibit good reactivity and nucleation ability. The 
MMA chain segments are the key structure of the chain extender, and the optimal 
ratio of styrene to MMA is 1.0 - 1.2. [132] The molecular structure design and 
selection of chain extenders are also important factors that further influence the 
structure and properties of PLA. 

3.3. Impact of Epoxy-Based Chain Extenders on the Mechanical  
Properties 

As previously mentioned, the application of epoxy-based chain extenders enhances 
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the molecular weight, polydispersity, and forms branched structures of polymers. 
This leads to an accelerated crystallization rate, an increased number of spheru-
lites and a decreased size. After being subjected to external forces, the more closely 
arranged crystal grains can better withstand stress and disperse around the sur-
roundings, thereby preventing local stress concentrations. In parallel, the reduced 
crystallinity provides more space for intermolecular chain slip within the amor-
phous zone, which enables more energy to be absorbed. Under the combined ac-
tion of these two factors, the flexural strength and impact strength are ultimately 
significantly improved. Furthermore, after chain extension and branching, the 
molecular spacing enlarges and the interaction force between molecular chains 
diminishes, leading to a decline in tensile strength. Nevertheless, as the degree of 
chain extension increases, the tensile strength can still exhibit a gradually increas-
ing tendency. The dendritic long-chain-branched structure makes a remarkable 
contribution to the enhancement of strain hardening under tensile flow, thus 
greatly enhancing the melt strength and influencing the molding and processing. 

3.4. Impact of Epoxy-Based Chain Extenders on the Degradation  
of PLA 

The hydrolysis of PLA generally consists of three stages: First, water molecules 
gradually penetrate into the interior of PLA, leading to slight hydrolysis from the 
surface to the interior; secondly, rapid hydrolysis occurs inside PLA, leading to 
material embrittlement; finally, low-molecular-weight PLA is further hydrolyzed 
into soluble lactic acid oligomers. The kinetics of hydrolysis of PLA were investi-
gated by Piedmont et al. in the temperature range of 140˚C to 180˚C. They tested 
PLA samples at concentrations ranging from 5 to 50 wt% and noted that the re-
action kinetics were independent of PLA concentration. The experimental data 
revealed two different reaction mechanisms: one related to the biphasic reaction 
and the other to the autocatalytic effect of the carboxylic acid groups during de-
polymerization. The latter is observed in PLA hydrolysis and leads to a decrease 
in solution pH. The introduction of the chain extender reduces the concentration 
of PLA end groups, thereby decreasing its hydrophilicity. In addition, the chain 
extension produces a capping effect on PLA, which enhances its resistance to wa-
ter erosion. [133]-[135] Palsikowski et al. studied the degradation of chain-ex-
tended PLA/PBAT. The presence of the chain extender has significantly reduced 
the degradation rate of pristine PBAT, which originally had a high degradation 
rate in soil. The functional groups of the chain extender could interact with the 
groups generated during the degradation of polymers, competing with molecular 
weight reduction and causing a delay in biodegradation. [119] By using chain ex-
tenders, the degradation stability and degradation cycle of PLA can be further reg-
ulated, providing great potential for its next application. 

4. Future Prospects 

In contemporary society, the development of environmentally friendly materials 
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has emerged as a prominent concern. Of particular significance are the recycling 
and reuse of materials, along with the exploration of degradable materials. Chain 
extenders prove to be of great value in this context. Through the incorporation of 
chain extenders into recycled plastics or biodegradable plastics, such as PLA, the 
material’s performance can be substantially enhanced, thereby broadening its 
range of applications. The substitution of traditional plastics with PLA and the 
replacement of virgin plastics with recycled ones not only lead to cost savings in 
production but also exert a favorable influence on environmental protection. This 
article reviews the different types of chain extenders for PLA and focuses on the 
influence of epoxy-based chain extenders on the properties of PLA. Epoxy-based 
chain extenders currently exhibit the most optimal overall performance, as they 
possess high cost-effectiveness, low toxicity, high reaction efficiency, and can react 
effectively with hydroxyl and carboxyl groups. Nevertheless, the majority of the 
chain extenders that are currently employed by researchers predominantly consist 
of small molecules or low molecular weight copolymers. Although they demon-
strate excellent chain-extending effects, their low molecular weights may lead to 
potential processing limitations, such as extrusion. Understanding the most re-
cent advancements in the application of chain extenders within biodegradable 
materials is of great significance for improving material performance, promoting 
the recycling of materials and driving the development of relevant industries. Fu-
ture research will continue to focus on the invention of novel chain extenders and 
their potential applications in diverse materials. For instance, by augmenting the 
molecular weight of the chain extender and employing a high epoxy functionality, 
the chain-extending effect on PLA as well as the impact on the crystallization be-
havior can be investigated, with the aim of further improving the performance of 
the chain extender. 
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