[1]
|
Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G. K. and Wilmonth, J. (2014) World Population Stabilization Unlikely This Century. Science, 346, 234-237. https://doi.org/10.1126/science.1257469
|
[2]
|
Alexandratos, N. (2012) World Agriculture towards 2030/2050: The 2012 Revision.
https://www.fao.org/3/ap106e/ap106e.pdf
|
[3]
|
Food and Agriculture Organization of the United Nations (FAO) (2020) New Standards to Curb the Global Spread of Plant Pests and Diseases.
http://www.fao.org/news/story/en/item/1187738/icode/
|
[4]
|
Savary, S., Bregaglio, S., Willocquet, L., Gustafson, D., Mason D’Croz, D., Sparks, A., Castilla, N., Djurle, A., Allinne, C., Sharma, M., Rossi, V., Amorim, L., Bergamin, A., Yuen, J., Esker, P., McRoberts, N., Avelino, J., Duveiller, E., Koo, J. and Garrett, K. (2017) Crop Health and Its Global Impacts on the Components of Food Security. Food Security, 9, 311-327. https://doi.org/10.1007/s12571-017-0659-1
|
[5]
|
Rizzo, D.M., Lichtveld, M., Mazet, J.A.K., Togami, E. and Miller, S.A. (2021) Plant Health and Its Effects on Food Safety and Security in a One Health framework: Four Case Studies. One Health Outlook, 3, Article No. 6.
https://doi.org/10.1186/s42522-021-00038-7
|
[6]
|
FAO (2021) News Article: Climate Change Fans Spread of Pests and Threatens Plants and Crops, New FAO Study.
https://www.fao.org/news/story/en/item/1402920/icode
|
[7]
|
Delaney, O. (2021) Food Security: Pests and Diseases Report.
https://forum.effectivealtruism.org/posts/9Xd63DYDbmd5K4dWw/food-security-pests-and-diseases-report
|
[8]
|
He, D.C., He, M.H., Amalin, D.M., Liu, W., Alvindia, D.G. and Zhan, J. (2021) Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens, 10, Article 1311. https://doi.org/10.3390/pathogens10101311
|
[9]
|
Russell, G.E. (2013) Plant Breeding for Pest and Disease Resistance: Studies in the Agricultural and Food Sciences. Butterworth-Heinemann, Oxford.
|
[10]
|
Riley, M., Williamson, M. and Maloy, O. (2002) Plant Disease Diagnosis. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2002-1021-01
|
[11]
|
Alemu, K. (2014) Real-Time PCR and Its Application in Plant Disease Diagnostics. Advances in Life Sciences and Technology, 27, 39-49.
|
[12]
|
Fang, Y. and Ramasamy, R.P. (2015) Current and Prospective Methods for Plant Disease Detection. Biosensors, 5, 537-561. https://doi.org/10.3390/bios5030537
|
[13]
|
Patel, R., Mitra, B., Vinchurkar, M., Adami, A., Patkar, R., Giacomozzi, F., Lorenzelli, L. and Baghini, M.S. (2022) A Review of Recent Advances in Plant-Pathogen Detection Systems. Heliyon, 8, e11855.
https://doi.org/10.1016/j.heliyon.2022.e11855
|
[14]
|
Ward, E., Foster, S.J., Fraaije, B.A. and McCartney, H.A. (2004) Plant Pathogen Diagnostics: Immunological and Nucleic Acid-Based Approaches. Annals of Applied Biology, 145, 1-16. https://doi.org/10.1111/j.1744-7348.2004.tb00354.x
|
[15]
|
Venbrux, M., Caruwels, S. and Rediers, H. (2023) Current and Emerging Trends in Techniques for Plant Pathogen Detection. Frontiers in Plant Science, 14, Article 1120968. https://doi.org/10.3389/fpls.2023.1120968
|
[16]
|
Bock, C.H., Poole, G.H., Parker, P.E. and Gottwald, T.R. (2020) Plant Disease Severity Estimated Visually, by Digital Image Analysis and by Hyperspectral Imaging. Precision Agriculture, 21, 189-212.
|
[17]
|
Rahaman, M.M., Chen, D., Gillani, Z., Klukas, C. and Chen, M. (2015) Advanced Phenotyping and Phenotype Data Analysis for the Study of Plant Growth and Development. Frontiers in Plant Science, 6, Article 619.
https://doi.org/10.3389/fpls.2015.00619
|
[18]
|
Lauri, A. and Mariani, P. (2008) Potentials and Limitations of Molecular Diagnostic Methods in Food Safety. Genes and Nutrition, 4, 1-12.
https://doi.org/10.1007/s12263-008-0106-1
|
[19]
|
Khakimov, A., Salakhutdinov, I., Omolikov, A. and Utaganov, S. (2022) Traditional and Current-Prospective Methods of Agricultural Plant Diseases Detection: A Review. IOP Conference Series: Earth and Environmental Science, 951, Article ID: 012002. https://doi.org/10.1088/1755-1315/951/1/012002
|
[20]
|
Gall, J.G. and Pardue, M.L. (1969) Formation and Detection of RNA-DNA Hybrid Molecules in Cytological Preparations. Proceedings of the National Academy of Sciences, 63, 378-383. https://doi.org/10.1073/pnas.63.2.378
|
[21]
|
DeLong, E.F., Wickham, G.S. and Pace, N.R. (1989) Phylogenetic Stains: Ribosomal RNA-Based Probes for the Identification of Single Cells. Science, 243, 1360-1363.
https://doi.org/10.1126/science.2466341
|
[22]
|
Shah, J.S. and Ramasamy, R. (2022) Fluorescence in Situ Hybridization (FISH) Tests for Identifying Protozoan and Bacterial Pathogens in Infectious Diseases. Diagnostics, 12, Article 1286. https://doi.org/10.3390/diagnostics12051286
|
[23]
|
Wagner, M. and Haider, S. (2012) New Trends in Fluorescence in Situ Hybridization for Identification and Functional Analyses of Microbes. Current Opinion in Biotechnology, 23, 96-102. https://doi.org/10.1016/j.copbio.2011.10.010
|
[24]
|
Moter, A. and Göbel, U.F. (2000) Fluorescence in Situ Hybridization (FISH) for Direct Visualization of Microorganisms. Journal of Microbiological Methods, 41, 85-112.
https://doi.org/10.1016/S0167-7012(00)00152-4
|
[25]
|
Kubota, K. (2013) CARD-FISH for Environmental Microorganisms: Technical Advancement and Future Applications. Microbes and Environments, 28, 3-12.
https://doi.org/10.1264/jsme2.ME12107
|
[26]
|
Ellison, M.A., McMahon, M.B., Bonde, M.R., Palmer, C.L. and Luster, D.G. (2016) In Situ Hybridization for the Detection of Rust Fungi in Paraffin-Embedded Plant Tissue Sections. Plant Methods, 12, Article No. 37.
https://doi.org/10.1186/s13007-016-0137-3
|
[27]
|
Salgado-Salazar, C., Bauchan, G.R., Wallace, E.C. and Crouch, J.A. (2018) Visualization of the Impatiens Downy Mildew Pathogen Using Fluorescence in Situ Hybridization (FISH). Plant Methods, 14, Article No. 92.
https://doi.org/10.1186/s13007-018-0362-z
|
[28]
|
Crone, M., McComb, J.A., O’Brien, P.A. and Hardy, G.E. (2013) Survival of Phytophthora cinnamomi as Oospores, Stromata, and Thick-Walled Chlamydospores in Roots of Symptomatic and Asymptomatic Annual and Herbaceous Perennial Plant Species. Fungal Biology, 117, 112-123.
https://doi.org/10.1016/j.funbio.2012.12.004
|
[29]
|
Li, A.Y., Crone, M., Adams, P.J., Fenwick, S.G., Hardy, G.E. and Williams, N. (2014) The Microscopic Examination of Phytophthora cinnamomi in Plant Tissues using Fluorescent in Situ Hybridization. Journal of Phytopathology, 162, 747-757.
https://doi.org/10.1111/jph.12257
|
[30]
|
Bellgard, S.E., Padamsee, M., Probst, C.M., Lebel, T. and Williams, S.E. (2016) Visualizing the Early Infection of Agathis australis by Phytophthora agathidicida, Using Microscopy and Fluorescent in Situ Hybridization. Forest Pathology, 46, 622-631.
https://doi.org/10.1111/efp.12280
|
[31]
|
Kortekamp, A. (2005) Growth, Occurrence, and Development of Septa in Plasmopara viticola and Other Members of the Peronosporaceae Using Light- and Epifluorescence-Microscopy. Mycological Research, 109, 640-648.
https://doi.org/10.1017/S0953756205002418
|
[32]
|
Díez-Navajas, A.M., Greif, C., Poutaraud, A. and Merdinoglu, D. (2007) Two Simplified Fluorescent Staining Techniques to Observe Infection Structures of the Oomycete Plasmopara viticola in Grapevine Leaf Tissues. Micron, 38, 680-683.
https://doi.org/10.1016/j.micron.2006.09.009
|
[33]
|
Diez-Navajas, A.M., Wiedemann-Merdinoglu, S., Greif, C. and Merdinoglu, D. (2008) Nonhost versus Host Resistance to the Grapevine Downy Mildew, Plasmopara viticola, Studied at the Tissue Level. Phytopathology, 98, 776-780.
https://doi.org/10.1094/PHYTO-98-7-0776
|
[34]
|
Voller, A., Bidwell, D.E. and Bartlett, A. (1976) Enzyme Immunoassays in Diagnostic Medicine. Theory and Practice. Bulletin of the World Health Organization, 53, 55-65.
|
[35]
|
Martin, R.R., James, D. and Lévesque, C.A. (2000) Impacts of Molecular Diagnostic Technologies on Plant Disease Management. Annual Review of Phytopathology, 38, 207-239. https://doi.org/10.1146/annurev.phyto.38.1.207
|
[36]
|
Wang, T., Li, P., Zhang, Q., Zhang, W., Zhang, Z., Wang, T. and He, T. (2017) Determination of Aspergillus Pathogens in Agricultural Products by a Specific Nanobody-Polyclonal Antibody Sandwich ELISA. Scientific Reports, 7, Article No. 4348.
https://doi.org/10.1038/s41598-017-04195-6
|
[37]
|
Sadriddinovna, N.F., Sulaymonovna, U.S. and Umorjonovna, R.S. (2022) Use of Saccharomyces Cerevisiae for Obtaining Conjugates for Elisa. Thematics Journal of Microbiology, 6, 16-23.
|
[38]
|
Clark, M.F. and Adams, A.N. (1977) Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. The Journal of General Virology, 34, 475-483. https://doi.org/10.1099/0022-1317-34-3-475
|
[39]
|
Zhang, S. and Vrient, A. (2020) Rapid Detection of Plant Viruses and Viroids. Applied Plant Virology, 101-109. https://doi.org/10.1016/B978-0-12-818654-1.00008-6
|
[40]
|
Schaad, N.W., Song, W., Hutcheson, S. and Dane, F. (2001) Gene Tagging Systems for Polymerase Chain Reaction-Based Monitoring of Bacteria Released for Biological Control of Weeds. Canadian Journal of Plant Pathology, 23, 36-41.
https://doi.org/10.1080/07060660109506906
|
[41]
|
Rowhani, A. and Falk, B.W. (1995) Enzyme-Linked Immunosorbent Assay (ELISA) Methods to Certify Pathogen (Virus)-Free Plants. In: Gamborg, O.L. and Phillips, G.C., Eds., Plant Cell, Tissue and Organ Culture: Fundamental Methods. Springer Berlin, Heidelberg, 267-280. https://doi.org/10.1007/978-3-642-79048-5_21
|
[42]
|
Hartati, L., Bakti, D. and Tantawi, A.R. (2020) Detection of Virus Causes Papaya ringspot Virus—With the DAS-Elisa (Double Antibody Sandwich-Enzyme-Linked Immunosorbent Assay) Method at Different Levels in North Sumatra. IOP Conference Series: Earth and Environmental Science, 454, Article ID: 012182.
https://doi.org/10.1088/1755-1315/454/1/012182
|
[43]
|
Cai, H., Caswell, J. and Prescott, J. (2014) Nonculture Molecular Techniques for Diagnosis of Bacterial Disease in Animals a Diagnostic Laboratory Perspective. Veterinary Pathology, 51, 341-350. https://doi.org/10.1177/0300985813511132
|
[44]
|
Mumford, R., Boonham, N., Tomlinson, J. and Barker, I. (2006) Advances in Molecular Phytodiagnostics—New Solutions for Old Problems. European Journal of Plant Pathology, 116, 1-19. https://doi.org/10.1007/s10658-006-9037-0
|
[45]
|
López, M.M., Bertolini, E., Olmos, A., Caruso, P., Corris, M.T., Llop, P., Renyalver, R. and Cambra, M. (2003) Innovative Tools for the Detection of Plant Pathogenic Viruses and Bacteria. International Microbiology, 6, 233-243.
https://doi.org/10.1007/s10123-003-0143-y
|
[46]
|
Farkas, D.H. and Holland, C.A. (2009) Overview of Molecular Diagnostic Techniques and Instrumentation. In: Cell and Tissue Based Molecular Pathology, Elsevier, Amsterdam, 19-32.
|
[47]
|
James, D.A. (1999) Simple and Reliable Protocol for the Detection of Apple Stem Grooving Virus by RT-PCR and in a Multiplex PCR Assay. Journal of Virological Methods, 83, 1-9. https://doi.org/10.1016/S0166-0934(99)00078-6
|
[48]
|
López, M.M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M. and Bertolini, E. (2009) Are Molecular Tools Solving the Challenges Posed by the Detection of Plant Pathogenic Bacteria and Viruses? Molecular Biology, 11, 13-46.
|
[49]
|
Nassuth, A., Pollari, E., Helmeczy, K., Stewart, S. and Kofalvi, S.A. (2000) Improved RNA Extraction and One-Tube RT-PCR Assay for Simultaneous Detection of Control Plant RNA Plus Several Viruses in Plant Extracts. Journal of Virological Methods, 90, 37-49. https://doi.org/10.1016/S0166-0934(00)00211-1
|
[50]
|
Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R. and Davis, C.E. (2015) Advanced Methods of Plant Disease Detection. A Review. Agronomy for Sustainable Development, 35, 1-25. https://doi.org/10.1007/s13593-014-0246-1
|
[51]
|
Kralik, P. and Ricchi, M. (2017) A Basic Guide to Real-Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Frontiers in Microbiology, 8, Article 108. https://doi.org/10.3389/fmicb.2017.00108
|
[52]
|
Bartlett, J.M. and Stirling, D. (2003) A Short History of the Polymerase Chain Reaction. Methods in Molecular Biology (Clifton, N.J.), 226, 3-6.
|
[53]
|
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. (2000) Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Research, 28, e63-e63. https://doi.org/10.1093/nar/28.12.e63
|
[54]
|
Gomez-Gutierrez, S.V. and Goodwin, S.B. (2022) Loop-Mediated Isothermal Amplification for Detection of Plant Pathogens in Wheat (Triticum aestivum). Frontiers in Plant Science, 13, Article 857673. https://doi.org/10.3389/fpls.2022.857673
|
[55]
|
Aliotta, J.M., Pelletier, J.J., Ware, J.L., Moran, L.S., Benner, J.S. and Kong, H. (1996) Thermostable Bst DNA Polymerase I Lacks a 3’ → 5’ Proofreading Exonuclease Activity. Genetic Analysis: Biomolecular Engineering, 12, 185-195.
https://doi.org/10.1016/S1050-3862(96)80005-2
|
[56]
|
Le, D.T. and Vu, N.T. (2017) Progress of Loop-Mediated Isothermal Amplification Technique in Molecular Diagnosis of Plant Diseases. Applied Biological Chemistry, 60, 169-180. https://doi.org/10.1007/s13765-017-0267-y
|
[57]
|
Karanis, P. and Ongerth, J. (2009) LAMP—A Powerful and Flexible Tool for Monitoring Microbial Pathogens. Trends in Parasitology, 25, Article ID: 4980499.
https://doi.org/10.1016/j.pt.2009.07.010
|
[58]
|
Rigano, L.A., Malamud, F., Orce, I.G., Filippone, M.P., Marano, M.R., Do Amaral, A.M., Castagnaro, A.P. and Vojnov, A.A. (2014) Rapid and Sensitive Detection of Candidatus Liberibacter Asiaticus by Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Dipstick. BMC Microbiology, 14, Article No. 86.
https://doi.org/10.1186/1471-2180-14-86
|
[59]
|
Gao, X., Chen, Y., Luo, X., Du, Z., Hao, K., An, M., Xia, Z. and Wu, Y. (2021) Recombinase Polymerase Amplification Assay for Simultaneous Detection of Maize Chlorotic Mottle Virus and Sugarcane Mosaic Virus in Maize. ACS Omega, 6, 18008-18013. https://doi.org/10.1021/acsomega.1c01767
|
[60]
|
Piepenburg, O., Williams, C.H., Stemple, D.L. and Armes, N.A. (2006) DNA Detection Using Recombination Proteins. PLOS Biology, 4, e204.
https://doi.org/10.1371/journal.pbio.0040204
|
[61]
|
Babu, B., Ochoa-Corona, F.M. and Paret, M.L. (2018) Recombinase Polymerase Amplification Applied to Plant Virus Detection and Potential Implications. Analytical Biochemistry, 546, 72-77. https://doi.org/10.1016/j.ab.2018.01.021
|
[62]
|
Luo, M., Meng, F.Z., Tan, Q., Yin, W.X. and Luo, C.X. (2021) Recombinase Polymerase Amplification/Cas12a-Based Identification of Xanthomonas arboricola pv. pruni on Peach. Frontiers in Plant Science, 12, Article 740177.
https://doi.org/10.3389/fpls.2021.740177
|
[63]
|
Mahlein, A.K. (2016) Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Disease, 100, 241-251. https://doi.org/10.1094/PDIS-03-15-0340-FE
|
[64]
|
Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., et al. (2010) Genome-Wide Association Studies of 14 Agronomic Traits in Rice Landraces. Nature Genetics, 42, 961-967.
https://doi.org/10.1038/ng.695
|
[65]
|
Li, Y., Xiao, J., Chen, L., Huang, X., Cheng, Z., Han, B., Zhang, Q. and Wu, C. (2018) Rice Functional Genomics Research: Past Decade and Future. Molecular Plant, 11, 359-380. https://doi.org/10.1016/j.molp.2018.01.007
|
[66]
|
Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J.H., Batchelor, W.D., Xiong, L. and Yan, J. (2020) Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Molecular Plant, 13, 187-214.
https://doi.org/10.1016/j.molp.2020.01.008
|
[67]
|
Xiao, Y., Liu, H., Wu, L., Warburton, M. and Yan, J. (2017) Genome-Wide Association Studies in Maize: Praise and Stargaze. Molecular Plant, 10, 359-374.
https://doi.org/10.1016/j.molp.2016.12.008
|
[68]
|
Tian, F., Bradbury, P.J., Brown, P.J., Hung, H., Sun, Q., Flint-Garcia, S., Rocheford, T.R., McMullen, M.D., Holland, J.B. and Buckler, E.S. (2011) Genome-Wide Association Study of Leaf Architecture in the Maize Nested Association Mapping Population. Nature Genetics, 43, 159-162. https://doi.org/10.1038/ng.746
|
[69]
|
Yao, W., Li, G., Yu, Y. and Ouyang, Y. (2018) funRiceGenes Dataset for Comprehensive Understanding and Application of Rice Functional Genes. GigaScience, 7, 1-9.
https://doi.org/10.1093/gigascience/gix119
|
[70]
|
Shi, C., Zhao, L., Zhang, X., Lv, G., Pan, Y. and Chen, F. (2019) Gene Regulatory Network and Abundant Genetic Variation Play Critical Roles in Heading Stage of Polyploidy Wheat. BMC Plant Biology, 19, Article No. 6.
https://doi.org/10.1186/s12870-018-1591-z
|
[71]
|
Deery, D.M., Rebetzke, G.J., Jimenez-Berni, J.A., James, R.A., Condon, A.G., Bovill, W.D., Hutchinson, P., Scarrow, J., Davy, R. and Furbank, R.T. (2016) Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography. Front. Frontiers in Plant Science, 7, Article 1808.
https://doi.org/10.3389/fpls.2016.01808
|
[72]
|
Nutter, F.W. (2001) Disease Assessment Terms and Concepts. In: Maloy, O.C. and Murray, T.D., Eds., Encyclopedia of Plant Pathology. John Wiley and Sons, Inc., New York, 312-323.
|
[73]
|
Bock, C.H., Poole, G.H., Parker, P.E. and Gottwald, T.R. (2010) Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging. Critical Reviews in Plant Sciences, 29, 59-107.
https://doi.org/10.1080/07352681003617285
|
[74]
|
Steddom, K., Bredehoeft, M.W., Khan, M. and Rush, C.M. (2005) Comparison of Visual and Multispectral Radiometric Disease Evaluations of Cercospora Leaf Spot of Sugar Beet. Plant Disease, 89, 153-158. https://doi.org/10.1094/PD-89-0153
|
[75]
|
Furbank, R.T. and Tester, M. (2011) Phenomics-Technologies to Relieve the Phenotyping Bottleneck. Trends in Plant Science, 16, 635-644.
https://doi.org/10.1016/j.tplants.2011.09.005
|
[76]
|
Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T. and Klukas, C. (2014) Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis. Plant Cell, 26, 4636-4655.
https://doi.org/10.1105/tpc.114.129601
|
[77]
|
Junker, A., Muraya, M.M., Weigelt-Fischer, K., Arana-Ceballos, F., Klukas, C., Melchinger, A.E., Meyer, R.C., Riewe, D. and Altmann, T. (2015) Optimizing Experimental Procedures for Quantitative Evaluation of Crop Plant Performance in High Throughput Phenotyping Systems. Frontiers in Plant Science, 5, Article 770.
https://doi.org/10.3389/fpls.2014.00770
|
[78]
|
Mir, R.R., Reynolds, M., Pinto, F., Khan, M.A. and Bhat, M.A. (2019) High-Through-put Phenotyping for Crop Improvement in the Genomics Era. Plant Science, 282, 60-72. https://doi.org/10.1016/j.plantsci.2019.01.007
|
[79]
|
Song, P., Wang, J., Guo, X., Yang, W. and Zhao, C., 2021. High-Throughput Phenotyping: Breaking through the Bottleneck in Future Crop Breeding. The Crop Journal, 9, 633-645. https://doi.org/10.1016/j.cj.2021.03.015
|
[80]
|
Fiorani, F. and Schurr, U. (2013) Future Scenarios for Plant Phenotyping. Annual Review of Plant Biology, 64, 267-291.
https://doi.org/10.1146/annurev-arplant-050312-120137
|
[81]
|
Hillnhütter, C., Schweizer, A., Kühnhold, V. and Sikora, R. A. (2010) Remote Sensing for the Detection of Soil-Borne Plant Parasitic Nematodes and Fungal Pathogens. In: Oerke, E.-C., Gerhards, R., Menz, G. and Sikora, R.A., Eds., Precision Crop Protection—The Challenge and Use of Heterogeneity. Springer, Dordrecht, 151-165.
https://doi.org/10.1007/978-90-481-9277-9_10
|
[82]
|
Mahlein, A.-K., Steiner, U., Hillnhütter, C., Dehne, H.-W. and Oerke, E.-C. (2012) Hyperspectral Imaging for Small-Scale Analysis of Symptoms Caused by Different Sugar Beet Disease. Plant Methods, 8, Article No. 3.
https://doi.org/10.1186/1746-4811-8-3
|
[83]
|
West, J.S., Bravo, C., Oberti, R., Moshou, D., Ramon, H. and McCartney, H.A. (2010) Detection of Fungal Diseases Optically and Pathogen Inoculum by Air Sampling. In: Oerke, E.-C., Gerhards, R., Menz, G. and Sikora, R.A., Eds., Precision Crop Protection—The Challenge and Use of Heterogeneity, Springer, Dordrecht, 135-149.
https://doi.org/10.1007/978-90-481-9277-9_9
|
[84]
|
Walter, A., Studer, B. and Kölliker, R. (2012) Advanced Phenotyping Offers Opportunities for Improved Breeding of Forage and Turf Species. Annals of Botany, 110, 1271-1279. https://doi.org/10.1093/aob/mcs026
|
[85]
|
Xie, C. and Yang, C. (2020) A Review on Plant High-Throughput Phenotyping Traits Using UAV-Based Sensors. Computers and Electronics in Agriculture, 178, Article ID: 105731. https://doi.org/10.1016/j.compag.2020.105731
|
[86]
|
McMullen, M.D., Kresovich, S., Villeda, H.S., Bradbury, P., Li, H., Sun, Q., Flint-Garcia, S., Thornsberry, J., Acharya, C., Bottoms, C., Brown, P., Browne, C., Eller, M., Guill, K., Harjes, C., Kroon, D., Lepak, N., Mitchell, S. E., Peterson, B., Pressoir, G. and Buckler, E.S. (2009) Genetic Properties of the Maize Nested Association Mapping Population. Science, 325, 737-740.
https://doi.org/10.1126/science.1174320
|
[87]
|
Parry, M.A.J., Reynolds, M., Salvucci, M.E., Raines, C., Andralojc, P.J., Zhu, X.G., Price, G.D., Condon, A.G. and Furbank, R.T. (2011) Raising Yield Potential of Wheat. II. Increasing Photosynthetic Capacity and Efficiency. Journal of Experimental Botany, 62, 453-467. https://doi.org/10.1093/jxb/erq304
|
[88]
|
Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M., Yano, K., Tokunaga, T., Fujiwara, T., Tsutsumi, N. and Iwata, H. (2017) High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling. Frontiers in Plant Science, 8, Article 421. https://doi.org/10.3389/fpls.2017.00421
|
[89]
|
Gogoi, N.K., Deka, B. and Bora, L.C. (2018) Remote Sensing and Its Use in Detection and Monitoring Plant Diseases: A Review. Agricultural Reviews, 39, 307-313.
https://doi.org/10.18805/ag.R-1835
|
[90]
|
Oerke E. C. (2018) Precision Crop Protection Systems. In: Stafford, J., Ed., Precision Agriculture for Sustainability, Burleigh Dodds Science, Cambridge, 347-397.
|
[91]
|
Oerke, E.C. (2020) Remote Sensing of Diseases. Annual Review of Phytopathology, 58, 225-252. https://doi.org/10.1146/annurev-phyto-010820-012832
|
[92]
|
Golhani, K., Balasundram, S.K., Vadamalai, G. and Pradhan, B. (2018) A Review of Neural Networks in Plant Disease Detection Using Hyperspectral Data. Information Processing in Agriculture, 5, 354-371. https://doi.org/10.1016/j.inpa.2018.05.002
|
[93]
|
Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K. and Huang, W. (2019) Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review. Computers and Electronics in Agriculture, 165, Article ID: 104943.
https://doi.org/10.1016/j.compag.2019.104943
|
[94]
|
Oerke, E.-C., Mahlein, A.-K. and Steiner, U. (2014) Proximal Sensing of Plant Diseases. In: Gullino, M.L. and Bonants, P.J.M., Eds., Detection and Diagnostics of Plant Pathogens. Springer, Dordrecht, 55-68.
https://doi.org/10.1007/978-94-017-9020-8_4
|
[95]
|
Camargo, A. and Smith, J.S. (2009) Image Pattern Classification for the Identification of Disease Causing Agents in Plants. Comput. Computers and Electronics in Agriculture, 66, 121-125. https://doi.org/10.1016/j.compag.2009.01.003
|
[96]
|
Neumann, M., Hallau, L., Klatt, B., Kersting, K. and Bauckhage, C. (2014) Erosion Band Features for Cell Phone Image Based Plant Disease Classification. Proceeding of the 22nd International Conference on Pattern Recognition (ICPR), Stockholm, 24-28 August 2014, 3315-3320. https://doi.org/10.1109/ICPR.2014.571
|
[97]
|
Barbedo, J.G.A., Koenigkan, L.V., Halfeld-Vieira, B.A., Costa, R.V., Nechet, K.L., et al. (2018) Annotated Plant Pathology Databases for Image-Based Detection and Recognition of Diseases. IEEE Latin America Transactions, 16, 1749-1757.
https://doi.org/10.1109/TLA.2018.8444395
|
[98]
|
Li, X., Li, R., Wang, M., Liu, Y., Zhang, B. and Zhou, J. (2017) Hyperspectral Imaging and their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables. In: Maldonado, A.I.L., Fuentes, H.R. and Contreras, J.A.V., Eds., Hyperspectral Imaging in Agriculture, Food and Environment, InTech, Lahore, 27-63.
https://doi.org/10.5772/intechopen.72250
|
[99]
|
Baret, F., Houlès, V. and Guerif, M. (2007) Quantification of Plant Stress Using Remote Sensing Observations and Crop Models: The Case of Nitrogen Management. Journal of Experimental Botany, 58, 869-880. https://doi.org/10.1093/jxb/erl231
|
[100]
|
Sahoo, R.N., Ray, S.S. and Manjunath, K.R. (2015) Hyperspectral Remote Sensing of Agriculture. Current Science, 108, 848-859.
|
[101]
|
Oerke, E.-C., Steiner, U., Dehne, H.-W. and Lindenthal, M. (2006) Thermal Imaging of Cucumber Leaves Affected by Downy Mildew and Environmental Conditions. Journal of Experimental Botany, 57, 2121-2132. https://doi.org/10.1093/jxb/erj170
|
[102]
|
Sankaran, S., Ashish, M., Reza, E. and Cristina, D.A. (2010) Review of Advanced Techniques for Detecting Plant Diseases. Computers and Electronics in Agriculture, 72, 1-13. https://doi.org/10.1016/j.compag.2010.02.007
|
[103]
|
Singh, V., Sharma, N. and Singh, S. (2020) A Review of Imaging Techniques for Plant Disease Detection. Artificial Intelligence in Agriculture, 4, 229-242.
https://doi.org/10.1016/j.aiia.2020.10.002
|
[104]
|
Hijri, M. (2009) The Use of Fluorescent in Situ Hybridisation in Plant Fungal Identification and Genotyping. In: Burns, R., Ed., Plant Pathology. Springer, Berlin, 131-145. https://doi.org/10.1007/978-1-59745-062-1_11
|
[105]
|
Chaerle, L., Lenk, S., Leinonen, I., Jones, H.G., Van Der Straeten, D. and Buschmann, D.C. (2009) Multi-Sensor Plant Imaging: Towards the Development of a Stress-Catalogue. Biotechnology Journal, 4, 1152-1167.
https://doi.org/10.1002/biot.200800242
|
[106]
|
Kobayashi, T., Kanda, E., Kitada, K., Ishiguro, K. and Torigoe, Y. (2001) Detection of Rice Panicle Blast with Multispectral Radiometer and the Potential of Using Airborne Multispectral Scanners. Phytopathology, 91, 316-323.
https://doi.org/10.1094/PHYTO.2001.91.3.316
|
[107]
|
Falkenberg, N., Piccinni, G., Cothren, J., Leskovar, D. and Rush, C. (2007) Remote Sensing of Biotic and Abiotic Stress for Irrigation Management of Cotton. Agricultural Water Management, 87, 23-31. https://doi.org/10.1016/j.agwat.2006.05.021
|
[108]
|
Chaerle, L. and Van Der Straeten, D. (2000) Imaging Techniques and the Early Detection of Plant Stress. Trends in Plant Science, 5, 495-501.
https://doi.org/10.1016/S1360-1385(00)01781-7
|
[109]
|
Murchie, E. H. and Lawson, T. (2013) Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. Journal of Experimental Botany, 64, 3983-3998. https://doi.org/10.1093/jxb/ert208
|
[110]
|
Raza, S., Prince, G., Clarkson, J.P and Rajpoot, N.M. (2015) Automatic Detection of Diseased Tomato Plants Using Thermal and Stereo Visible Light Images. PLOS ONE, 10, e0123262. https://doi.org/10.1371/journal.pone.0123262
|
[111]
|
Baker, N.R. (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
https://doi.org/10.1146/annurev.arplant.59.032607.092759
|
[112]
|
Rousseau, C., Belin, E., Bove, E., Rousseau, D. and Fabre, F. (2013) High Throughput Quantitative Phenotyping of Plant Resistance Using Chlorophyll Fluorescence Image Analysis. Plant Methods, 9, Article No. 17.
https://doi.org/10.1186/1746-4811-9-17
|
[113]
|
Jarolmasjed, S., Sankaran, S., Marzougui, A., Kostick, S. and Si, Y.S. (2019) High-Throughput Phenotyping of Fire Blight Disease Symptoms Using Sensing Techniques in Apple. Frontiers in Plant Science, 10, Article 576.
https://doi.org/10.3389/fpls.2019.00576
|
[114]
|
Tischler, Y.K., Thiessen, E., Hartung, E. (2018) Early Optical Detection of Infection with Brown Rust in Winter Wheat by Chlorophyll Fluorescence Excitation Spectra. Computers and Electronics in Agriculture, 146, 77-85.
https://doi.org/10.1016/j.compag.2018.01.026
|
[115]
|
Kang, W.S., Hong, S.S., Han, Y.K., Kim, K.R., Kim, S.G. and Park, E.W. (2010) A Web-Based Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution. The Plant Pathology Journal, 26, 37-48.
https://doi.org/10.5423/PPJ.2010.26.1.037
|
[116]
|
Khaled, A.Y., AbdAziz, S., Bejo, S.K., Nawi, N.M., Seman, I.A. and Onwude, D.I. (2017) Early Detection of Diseases in Plant Tissue Using Spectroscopy: Applications and Limitations. Applied Spectroscopy Reviews, 53, 36-64.
https://doi.org/10.1080/05704928.2017.1352510
|
[117]
|
Jacquemoud, S. and Ustin, S.L. (2001) Leaf Optical Properties: A State of the Art. 8th International Symposium of Physical Measurements & Signatures in Remote Sensing, Aussois, 223-332.
|
[118]
|
Yuan, L., Huang, Y., Loraamm, R.W., Nie, C., Wang, J. and Zhang, J. (2014) Spectral Analysis of Winter Wheat Leaves for Detection and Differentiation of Diseases and Insects. Field Crops Research, 156, 199-207.
https://doi.org/10.1016/j.fcr.2013.11.012
|
[119]
|
Stephenson, G.R. (2003) Pesticide Use and World Food Production: Risks and Benefits. American Chemical Society, 853, 261-270.
https://doi.org/10.1021/bk-2003-0853.ch015
|
[120]
|
Ghormade, V., Deshpande, M.V. and Paknikar, K.M. (2011) Perspectives for Nano-Biotechnology Enabled Protection and Nutrition of Plants. Biotechnology Advances, 29, 792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007
|
[121]
|
Sinha, K., Ghosh, J. and Sil, P.C. (2017) New Pesticides: A Cutting-Edge View of Contributions from Nanotechnology for the Development of Sustainable Agricultural Pest Control. In: Grumezescu, A.M., Ed., New Pesticides and Soil Sensors, Academic Press, Cambridge, 47-79.
https://doi.org/10.1016/B978-0-12-804299-1.00003-5
|
[122]
|
Balaure, P.C., Gudovan, D. and Gudovan, I.A. (2017) Nanopesticides: A New Paradigm in Crop Protection. In: Grumezescu, A.M., Ed., New Pesticides and Soil Sensors, Academic Press, Cambridge, 129-192.
https://doi.org/10.1016/B978-0-12-804299-1.00005-9
|
[123]
|
McNeil, S.E. (2005) Nanotechnology for the Biologist. Journal of Leukocyte Biology, 78, 585-594. https://doi.org/10.1189/jlb.0205074
|
[124]
|
Dash, K.K., Deka, P., Punia, S., Chaudhary, V., Trif, M. and Rusu, A. (2022) Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers, 14, Article 521. https://doi.org/10.3390/polym14030521
|
[125]
|
Sim, S. and Wong, N.K. (2021) Nanotechnology and Its Use in Imaging and Drug Delivery (Review). Biomedical Reports, 14, Article No. 42.
https://doi.org/10.3892/br.2021.1418
|
[126]
|
Worrall, E.A., Hamid, A., Mody, K.T., Mitter, N. and Pappu, H.R. (2018) Nanotechnology for Plant Disease Management. Agronomy, 8, Article 285.
https://doi.org/10.3390/agronomy8120285
|
[127]
|
Khiyami, M.A., Almoammar, H., Awad, Y.M., Alghuthaymi, M.A. and Abd-Elsalam, K.A. (2014) Plant Pathogen Nanodiagnostic Techniques: Forthcoming Changes? Biotechnology & Biotechnological Equipment, 28, 775-785.
https://doi.org/10.1080/13102818.2014.960739
|
[128]
|
Hayles, J., Johnson, L., Worthley, C. and Losic, D. (2017) Nanopesticides: A Review of Current Research and Perspectives. In: Grumezescu, A.M., Ed., New Pesticides and Soil Sensors, Academic Press, Cambridge, 193-225.
https://doi.org/10.1016/B978-0-12-804299-1.00006-0
|
[129]
|
Bhalla, N., Jolly, P., Formisano, N. and Estrela, P. (2016) Introduction to Biosensors. Essays in Biochemistry, 60, 1-8. https://doi.org/10.1042/EBC20150001
|
[130]
|
Zhao, F., He, J., Li, X., Bai, Y., Ying, Y. and Ping, J. (2020). Smart Plant-Wearable Biosensor for in-Situ Pesticide Analysis. Biosensors & Bioelectronics, 170, Article ID: 112636. https://doi.org/10.1016/j.bios.2020.112636
|
[131]
|
Rowe, J., Grangé-Guermente, M., Exposito-Rodriguez, M., Wimalasekera, R., Lenz, M. O., Shetty, K. N., Cutler, S. R. and Jones, A. M. (2023) Next-Generation ABACUS Biosensors Reveal Cellular ABA Dynamics Driving Root Growth at Low Aerial Humidity. Nature Plants, 9, 1103-1115. https://doi.org/10.1038/s41477-023-01447-4
|
[132]
|
Yoon, J.H., Shin, M., Lee, T.S. and Choi, J.W. (2020) Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review. Materials, 13, Article 299.
https://doi.org/10.3390/ma13020299
|
[133]
|
Isoda, R., Yoshinari, A., Ishikawa, Y., Sadoine, M., Simon, R., Frommer, W. B. and Nakamura, M. (2020) Sensors for the Quantification, Localization and Analysis of the Dynamics of Plant Hormones. Plant Journal, 105, 542-557.
https://doi.org/10.1111/tpj.15096
|
[134]
|
Regiart, M., Rinaldi-Tosi, M., Aranda, P.R., Bertolino, F.A., Villarroel-Rocha, J., Sapag, K., Messina, G.A., Raba, J. and Fernández-Baldo, M.A. (2017) Development of a Nanostructured Immunosensor for Early and in Situ Detection of Xanthomonas arboricola in Agricultural Food Production. Talanta, 175, 535-541.
https://doi.org/10.1016/j.talanta.2017.07.086
|
[135]
|
Marrazza, G. (2014) Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review. Biosensors, 4, 301-317.
https://doi.org/10.3390/bios4030301
|
[136]
|
Li, F., Huang, J., Ma, X., Li, S., Li, S., Xu, C. and Sun, H. (2020) Deep Learning-Based Detection and Identification of Plant Diseases under Natural Environment. Computers and Electronics in Agriculture, 170, Article ID: 105265.
|
[137]
|
Zhang, N., Yang, G., Pan, Y., Yang, X., Chen, L. and Zhao, C. (2020) A Review of Advanced Technologies and Development for Hyperspectral-Based Plant Disease Detection in the Past Three Decades. Remote Sensing, 12, Article 3188.
https://doi.org/10.3390/rs12193188
|
[138]
|
Kamilaris, A. and Prenafeta-Boldú, F.X. (2018) Deep Learning in Agriculture: A Survey. Computers and Electronics in Agriculture, 147, 70-90.
https://doi.org/10.1016/j.compag.2018.02.016
|
[139]
|
Orchi, H., Sadik, M. and Khaldoun, M. (2021) On Using Artificial Intelligence and the Internet of Things for Crop Disease Detection: A Contemporary Survey. Agriculture, 12, Article 9. https://doi.org/10.3390/agriculture12010009
|
[140]
|
Prajapati, M.K., Anamita, S. and Viabhav, U. (2023) An Era of Digital Plant Pathology: Artificial Intelligence and Machine Learning for Detection of Plant Diseases. Vigyan Varta an International E-Magazine for Science Enthusiasts, 4, 8-12.
|
[141]
|
Savary, S., Ficke, A., Aubertot, J.N. and Hollier, C. (2012) Crop Losses Due to Diseases and Their Implications for Global Food Production Losses and Food Security. Food Security, 4, 519-537. https://doi.org/10.1007/s12571-012-0200-5
|
[142]
|
Terentev, A., Dolzhenko, V., Fedotov, A. and Eremenko, D. (2022) Current State of Hyperspectral Remote Sensing for Early Plant Disease Detection: A Review. Sensors, 22, Article 757. https://doi.org/10.3390/s22030757
|
[143]
|
Chen, Y., Lin, Z., Zhao, X., Wang, G. and Gu, Y. (2014) Deep Learning-Based Classification of Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107.
https://doi.org/10.1109/JSTARS.2014.2329330
|
[144]
|
Singh, B.K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J.E., Liu, H. and Trivedi, P. (2023) Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nature Reviews Microbiology, 21, 640-656.
https://doi.org/10.1038/s41579-023-00900-7
|
[145]
|
Buja, I., Sabella, E., Monteduro, A.G., Chiriacò, M.S., De Bellis, L., Luvisi, A. and Maruccio, G. (2021) Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors, 21, Article 2129.
https://doi.org/10.3390/s21062129
|
[146]
|
Donoso, A. and Valenzuela, S. (2018) In-Field Molecular Diagnosis of Plant Pathogens: Recent Trends and Future Perspectives. Plant Pathology, 67, 1451-1461.
https://doi.org/10.1111/ppa.12859
|
[147]
|
Shoaib, M., Shah, B., EI-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Gechev, T., Hussain, T. and Ali, F. (2023) An Advanced Deep Learning Models-Based Plant Disease Detection: A Review of Recent Research. Frontiers in Plant Science, 14, Article 1158933. https://doi.org/10.3389/fpls.2023.1158933
|
[148]
|
Deguine, J.P., Aubertot, J.N., Flor, R.J., Lescourret, F., Wyckhuys, K.A.G. and Ratnadass, A. (2021) Integrated Pest Management: Good Intentions, Hard Realities. A Review. Agronomy for Sustainable Development, 41, Article No. 38.
https://doi.org/10.1007/s13593-021-00689-w
|
[149]
|
Karlsson Green, K., Stenberg, J.A. and Lankinen, Å. (2020) Making Sense of Integrated Pest Management (IPM) in the Light of Evolution. Evolutionary Applications, 13, 1791-1805. https://doi.org/10.1111/eva.13067
|
[150]
|
Roberts, D.P., Short, N.M., Sill, J., Dilip K. H., Hu, X. and Buser, M. (2021). Precision Agriculture and Geospatial Techniques for Sustainable Disease Control. Indian Phytopathology, 74, 287-305. https://doi.org/10.1007/s42360-021-00334-2
|
[151]
|
Degani, O., Chen, A., Dor, S., Orlov-Levin, V., Jacob, M., Shoshani, G. and Rabinovitz, O. (2022) Remote Evaluation of Maize Cultivars Susceptibility to Late Wilt Disease Caused by Magnaporthiopsis maydis. Journal of Plant Pathology, 104, 509-525.
https://doi.org/10.1007/s42161-022-01039-9
|
[152]
|
Giles, K.L., McCornack, B.P., Royer, T.A. and Elliott, N.C. (2017) Incorporating Biological Control into IPM Decision Making. Current Opinion in Insect Science, 20, 84-89. https://doi.org/10.1016/j.cois.2017.03.009
|
[153]
|
Kron, C.R. and Sisterson, M.S. (2020) Spissistilus festinus (Hemiptera: Membracidae) Susceptibility to Six Generalist Predators. PLOS ONE, 15, Article ID: 242775.
https://doi.org/10.1371/journal.pone.0242775
|
[154]
|
Shtienberg, D. (2013) Will Decision-Support Systems Be Widely Used for the Management of Plant Diseases? Annual Review of Phytopathology, 51, 1-16.
https://doi.org/10.1146/annurev-phyto-082712-102244
|
[155]
|
Chivasa, W., Mutanga, O. and Biradar, C. (2020) UAV-Based Multispectral Phenotyping for Disease Resistance to Accelerate Crop Improvement under Changing Climate Conditions. Remote Sensing, 12, Article 2445.
https://doi.org/10.3390/rs12152445
|
[156]
|
Ristaino, J.B., Anderson, P.K., Bebber, D.P., Brauman, K.A., Cunniffe, N.J., Fedoroff, N.V., Finegold, C., Garrett, K.A., Gilligan, C.A., Jones, C.M., Martin, M.D., MacDonald, G.K., Neenan, P., Records, A., Schmale, D.G., Tateosian, L. and Wei, Q. (2021) The Persistent Threat of Emerging Plant Disease Pandemics to Global Food Security. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022239118. https://doi.org/10.1073/pnas.2022239118
|
[157]
|
Basu, C. (2010). Plant Genomics in the 21 Century. Current genomics, 11, 1.
https://doi.org/10.2174/138920210790217963
|
[158]
|
Kamilaris, A., Andreas, K. and Francesc X.P. (2017) A Review on the Practice of Big Data Analysis in Agriculture. Computers and Electronics in Agriculture, 143, 23-37.
https://doi.org/10.1016/j.compag.2017.09.037
|
[159]
|
Metzker, M.L. (2010) Sequencing Technologies—The Next Generation. Nature Reviews Genetics, 11, 31-46. https://doi.org/10.1038/nrg2626
|
[160]
|
Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. and Nelson, A. (2019) The Global Burden of Pathogens and Pests on Major food Crops. Nature Ecology & Evolution, 3, 430-439. https://doi.org/10.1038/s41559-018-0793-y
|
[161]
|
Van Esse, H.P., Reuber, T.L. and van der Does, D. (2020) Genetic Modification to Improve Disease Resistance in Crops. New Phytologist, 225, 70-86.
https://doi.org/10.1111/nph.15967
|
[162]
|
Lu, Y., Wyckhuys, K.A.G., Yang, L., Liu, B., Zeng, J., Jiang, Y., Desneux, N., Zhang, W. and Wu, K. (2022) Bt Cotton Area Contraction Drives Regional Pest Resurgence, Crop Loss, and Pesticide Use. Plant Biotechnology Journal, 20, 390-398.
https://doi.org/10.1111/pbi.13721
|
[163]
|
Ufaq, K. and Ashish, O. (2019) Plant Disease Detection Techniques: A Review. International Journal of Computer Science and Mobile Computing, 8, 59-68.
|
[164]
|
Bebber, D.P., Ramotowski, M.A. and Gurr, S.J. (2013) Crop Pests and Pathogens Move Polewards in a Warming World. Nature Climate Change, 3, 985-988.
https://doi.org/10.1038/nclimate1990
|
[165]
|
Gent, D.H., De Wolf, E. and Pethybridge, S.J. (2011) Perceptions of Risk, Risk Aversion, and Barriers to Adoption of Decision Support Systems and Integrated Pest Management: An Introduction. Phytopathology, 101, 640-643.
https://doi.org/10.1094/PHYTO-04-10-0124
|
[166]
|
Stuart, M.B., Stanger, L.R., Hobbs, M.J., Pering, T.D., Thio, D., McGonigle, A.J.S. and Willmott, J.R. (2020) Low-Cost Hyperspectral Imaging System: Design and Testing for Laboratory-Based Environmental Applications. Sensors, 20, Article 3293.
https://doi.org/10.3390/s20113293
|
[167]
|
Stenberg, J.A. (2017) A Conceptual Framework for Integrated Pest Management. Trends in Plant Science, 22, 759-769. https://doi.org/10.1016/j.tplants.2017.06.010
|
[168]
|
National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Environmental Studies and Toxicology; Committee on Incorporating 21st Century Science into Risk-Based Evaluations (2017) Using 21st Century Science to Improve Risk-Related Evaluations: Interpretation and Integration of Data and Evidence for Risk-Based Decision-Making. National Academies Press, Washington DC. https://www.ncbi.nlm.nih.gov/books/NBK424991
|
[169]
|
Janiesch, C., Zschech, P. and Heinrich, K. (2021) Machine Learning and Deep Learning. Electron Markets, 31, 685-695. https://doi.org/10.1007/s12525-021-00475-2
|
[170]
|
Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L., Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu, Z., Qiu, X., Song, R., Tang, J., Wen, J.-R., Yuan, J., Zhao, W.X. and Zhu, J. (2021) Pre-Trained Models: Past, Present and Future. AI Open, 2, 225-250.
https://doi.org/10.1016/j.aiopen.2021.08.002
|
[171]
|
Sapoval, N., Aghazadeh, A., Nute, M.G., Antunes, D.A., Balaji, A., Baraniuk, R., Barberan, C.J., Dannenfelser, R., Dun, C., Edrisi, M., Elworth, L., Kille, B., Kyrillidis, A., Nakhleh, L., Wolfe, C.R., Yan, Z., Yao, V. and Treangen, T.J. (2022) Current Progress and Open Challenges for Applying Deep Learning across the Biosciences. Nature Communications, 13, Article No. 1728.
https://doi.org/10.1038/s41467-022-29268-7
|
[172]
|
Arsenovic, M., Karanovic, M., Sladojevic, S., Anderla, A. and Stefanovic, D. (2019) Solving Current Limitations of Deep Learning Based Approaches for Plant Disease Detection. Symmetry, 11, Article 939. https://doi.org/10.3390/sym11070939
|
[173]
|
Heeb, L., Jenner, E. and Cock, M.J.W. (2019) Climate-Smart Pest Management: Building Resilience of Farms and Landscapes to Changing Pest Threats. Journal of Pest Science, 92, 951-969. https://doi.org/10.1007/s10340-019-01083-y
|
[174]
|
Bouri, M., Arslan, K.S. and Şahin, F. (2023) Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability, 15, Article 4592.
https://doi.org/10.3390/su15054592
|
[175]
|
Perez, A.J. and Zeadally, S. (2021) Recent Advances in Wearable Sensing Technologies. Sensors, 21, Article 6828. https://doi.org/10.3390/s21206828
|