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Abstract 
Plant diseases and pests present significant challenges to global food security, 
leading to substantial losses in agricultural productivity and threatening en-
vironmental sustainability. As the world’s population grows, ensuring food 
availability becomes increasingly urgent. This review explores the significance 
of advanced plant disease detection techniques in disease and pest manage-
ment for enhancing food security. Traditional plant disease detection me-
thods often rely on visual inspection and are time-consuming and subjective. 
This leads to delayed interventions and ineffective control measures. Howev-
er, recent advancements in remote sensing, imaging technologies, and mole-
cular diagnostics offer powerful tools for early and precise disease detection. 
Big data analytics and machine learning play pivotal roles in analyzing vast 
and complex datasets, thus accurately identifying plant diseases and predict-
ing disease occurrence and severity. We explore how prompt interventions 
employing advanced techniques enable more efficient disease control and 
concurrently minimize the environmental impact of conventional disease and 
pest management practices. Furthermore, we analyze and make future rec-
ommendations to improve the precision and sensitivity of current advanced 
detection techniques. We propose incorporating eco-evolutionary theories 
into research to enhance the understanding of pathogen spread in future cli-
mates and mitigate the risk of disease outbreaks. We highlight the need for a 
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science-policy interface that works closely with scientists, policymakers, and 
relevant intergovernmental organizations to ensure coordination and colla-
boration among them, ultimately developing effective disease monitoring and 
management strategies needed for securing sustainable food production and 
environmental well-being. 
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1. Introduction 

The global population is projected to grow to around 9.6 billion by the year 2050 
and continue increasing to 10.9 billion by the end of the century [1]. Given the 
current trends and projected population growth, an increase in food production 
by 60% - 70% is required for the global food supply to keep pace with the grow-
ing population [2]. While there is a demand for increased food production, pests 
and disease remain major challenges to global food productivity responsible for 
up to 20% - 40% of food loss while costing the global economy ~$220 billion [3]. 
The inability to provide interventions may lead to more loss, thus, several meas-
ures have to be taken to prevent 100% yield loss and exacerbate food insecurity 
[4] [5] [6] [7].  

Many efforts have been made to prevent and control the disasters caused by 
pests and diseases. Traditionally, biological controls involve the use of predators 
of plant pests and the use of resistant crop varieties [8]. With the increase in in-
vasive pests and more virulent pathogens, conventional methods are less effec-
tive, causing the otherwise resistant crop varieties to become susceptible [9]. The 
use of direct methods, such as molecular techniques, to detect plant pathogens 
has proven effective over the years as it has a high sensitivity, especially for mi-
crobes that may be present but visually undetectable, that is, symptomless. Mo-
lecular techniques also can be used instead of the traditional method of ma-
nually identifying pathogens by skilled taxonomists. Advanced detection and 
identification of pathogens are thus required to implement effective control 
measures to prevent greater yield loss [10] [11]. The methods of disease detec-
tion can be divided into two categories: direct and indirect, with the former 
performed in a lab setting while the latter is implemented in site and has limita-
tions such as PCR when it comes to field sampling of diseases [12] [13]. Nu-
merous potential methods have been overlooked, each with fewer risks and li-
mitations, either due to slow time to yield results or a lack of details on effec-
tiveness. This review aims to comprehensively examine plant disease detection 
techniques that encompass traditional and modern approaches. Additionally, the 
study delves into neglected methods that have the potential for success while 
offering strategies for improvement. The analysis will cover a wide range of tech-
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niques, including molecular techniques, immunological methods, remote sens-
ing, high-throughput phenotyping, nanotechnology, and big data analytics. More-
over, the study will emphasize the importance of integrating disease and pest 
management strategies into detection methods. Key strategies to be highlighted 
include early detection, precision agriculture, targeted treatments, and integrated 
pest management. The study will also address the challenges and future directions 
in plant disease detection. It will underscore the necessity for continuous innova-
tion, collaboration, and improvement to combat plant diseases and safeguard glob-
al food security effectively. 

By expanding on these aspects and providing detailed discussions for each topic, 
the study will offer a comprehensive analysis of plant disease detection tech-
niques. This will contribute to our understanding of effective disease manage-
ment and support the development of strategies to ensure sustainable agriculture 
practices. 

2. Traditional Plant Disease Detection Techniques 

Primarily, the first step toward disease detection is by visually observing the 
symptoms present in the plants [14]. While this can provide some direction, the 
potential difficulty lies in effectively addressing the challenge. Visual observation 
does not provide any specific information about the microorganism causing the 
disease as well as the period of infection. Visual observation of plant symptoms 
has limitations in providing specific information about the causative agent and 
the stage of infection [15]. This method potentially leads to inaccuracies because 
it heavily relies on the expertise of the observer. Therefore, more advanced and 
standardized techniques for pathogen identification, detection, and quantifica-
tion are necessary to overcome these limitations and ensure more precise and 
reliable disease diagnosis. Some of the previously used methods apart from visu-
al observation of symptoms include microscopic evaluation of the morphological 
characteristics to identify pathogens, culturing on growth media, and serological, 
molecular, and phenotyping [16]. While some pathogens can be detected using a 
growth medium when applicable, multiple approaches can be utilized to deter-
mine the specific disease [14]. 

However, like any other approach, traditional methods also have their limita-
tions and challenges. Time consumption, reliance on bulky machinery, and the 
need for expert personnel [17], as well as the detection of targeted and non-targeted 
pathogens [18], are some of the major challenges associated with these methods. 

Addressing these challenges is essential to fully harness modern detection tech-
niques and their potential for disease detection and management. 

3. Overview of Advanced Techniques  

Accurate and rapid identification of pathogens is essential in applying the most 
appropriate disease management to produce quality crops. Conventional me-
thods used over the years to detect different plant pathogens may include; vis-
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ual observation, microscopy, mycological assays, plant indicator tests, and more. 
However, plant disease diagnosis based on phenotypic features is not always re-
liable and has some limitations in time and accuracy. While some common plant 
diseases can be easily identified in the field with a trained eye, many symptoms 
displayed by unhealthy plants could also be due to environmental stress, poor 
soil conditions, insects and pests, chemical damage from fertilizers or fungicides, 
and even more than one pathogen can attack a plant. Also, some phytopatho-
gens can cause disease with asymptomatic or weakly characteristic symptoms at 
the beginning of development [19]. Thus, the traditional forms of detection are 
at a disadvantage, as it becomes difficult to diagnose the diseases and identify 
their pathogens accurately. In the last two decades, with technological advance-
ment came an improvement in rapid disease diagnosis techniques. Different 
phytopathogens, including fungi, bacteria, and viruses, can be identified using 
molecular and Immunological methods. These methods are highly effective for 
accurately identifying a pathogen at the species level. They provide real-time di-
agnosis, and the sensitivity of these analyses is much higher than that of conven-
tional methods, which allows for the rapid and accurate detection of pathogens 
even in asymptomatic plants that may harbor relatively low pathogen popula-
tions.  

3.1. Fluorescence in Situ Hybridization (FISH) 

Fluorescence in situ hybridization (FISH) assays using oligonucleotide probes 
targeting rRNA were first introduced in 1969 [20] [21]. It examines the forma-
tion and detection of RNA-DNA or DNA-DNA nucleotide complementary hy-
brids in cells utilizing radioactively labeled oligonucleotides as probes [22]. FISH 
has since been used as a cultivation-independent tool to detect, identify, and 
quantify plant microorganisms [23]. It is a sensitive and robust method that 
recognizes plant pathogen-specific ribosomal RNA (rRNA) sequences. Thus, 
it provides a high affinity and specificity of DNA probes. These oligonucleotide 
probes are between 15 and 30 base pairs in length and are usually labeled with 
one or more fluorescent dyes [24]. This is important and useful to detect and 
target obligate biotrophs that are not culturable and allows for the direct study of 
plant pathogens in their natural environment [25] [26]. FISH technique is based 
on four core steps: 1) specimen fixation and immobilization; 2) permeabilization 
to increase the accessibility of an organism specific-nucleic acid probe to the 
target; 3) hybridization of the probe; 4) washing to remove unbound probe; and 
5) documentation by microscopy or flow cytometry [27]. Although introduced 
many years ago, few studies have applied this technique to visualize oomycete 
plant pathogens such as Phytophthora agathidicida and P. cinnamomi [28] [29] 
[30]. Non-specific fluorescent staining techniques have been used to visualize in-
fection structures, cellular plant growth, and response to the grape downy mildew 
pathogen Plasmopara viticola [31] [32] [33]. FISH assays have also been devel-
oped for species-specific visualization of Plasmopara obducens, an oomycete that 
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causes downy mildew diseases in the ornamental bedding plant Impatiens walle-
riana [27]. 

3.2. Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA is a serological technique introduced in the 1970s [34] and has since be-
come the most widely used laboratory method for screening viruses in plant 
samples. Although ELISA was developed to study viruses that have characteris-
tics that make early diagnosis challenging, this assay can also be used for detect-
ing other plant pathogens, like bacteria and fungi [35] [36] [37]. Because of its 
high-throughput potential, ELISA can detect pathogens in plant propagation ma-
terials, including seeds, herbaceous cuttings, woody materials, rootstocks, and 
scions. In the enzyme-linked immunosorbent assay (ELISA), enzymatic reactions 
are used to detect and quantify the amount of a specific substance, such as viral 
proteins/particles in a sample. The antigens are the target epitopes from the vi-
ruses, bacteria, and fungi made to bind with antibodies conjugated to an enzyme 
specifically [38]. The detection can be visualized by spectrophotometry based on 
color changes resulting from the interaction between the substrate and the immo-
bilized enzyme [39]. ELISA is sensitive, specific, inexpensive, and frequently pre-
ferred because of its speed and simplicity. However, the sensitivity of ELISA va-
ries depending on the organism, sample freshness, and titer; for instance, bacte-
ria can be detected at 100 cfu∙mL−1 [40]. ELISA is also useful for handling large 
samples and can quickly provide quantitative and qualitative data [41]. Modifi-
cations of ELISA include; direct or double antibody sandwich (DAS) ELISA and 
indirect ELISA (I-ELISA). DAS-ELISA uses antiviral antibodies to trap viral anti-
gens from plant samples by binding them onto a solid matrix to detect bound 
viral antigens [41]. On the other hand, I-ELISA has the advantages of achieving 
higher sensitivity in antigen detection and giving lower background absorbance 
values for healthy or nonhomologous samples [42]. 

3.3. Polymerase Chain Reaction (PCR) 

Since the introduction of the polymerase chain reaction (PCR) technology for 
the development of monoclonal antibodies and amplification of nucleic acid se-
quences by Nobel laureate Kary Mullis in 1993, it has had a profound impact on 
plant disease diagnosis [12]. PCR was initially used to detect highly specific dis-
eases caused by bacteria and viruses because of its high accuracy in DNA hybri-
dization and replication [43]. PCR offers several advantages in detecting a single 
target in complex mixtures, rapid and specific detection of multiple targets, and 
the potential to detect unculturable pathogens. In PCR-based diagnostics, pri-
mers are designed to pair with unique DNA regions from target organisms for 
DNA amplification and detection. Specific amplification of target nucleic acid 
sequences is widely used to detect and identify plant pathogens [44]. In addi-
tion to the basic PCR technology, several variants have been developed over 
the years to increase the sensitivity of this technique. The reverse-transcription 

https://doi.org/10.4236/ajps.2023.1411086


M. A. John et al. 
 

 

DOI: 10.4236/ajps.2023.1411086 1265 American Journal of Plant Sciences 
 

PCR (RT-PCR) is used to amplify RNA targets due to its high sensitivity. It is an 
RNA-dependent DNA polymerase that catalyzes DNA synthesis using RNA as the 
template, thus is most practical for plant virus detection [45] [46]. While nested 
PCR (n-PCR) requires using one or two internal primers performed in two steps 
to amplify multiple sequences, multiplex PCR (M-PCR) enables the amplifica-
tion of two or more target DNA or RNA sequences in a single reaction [47] [48] 
[49]. Multiplex nested RT-PCR was developed to increase sensitivity and speci-
ficity, especially when several pathogens frequently infect a single plant. Thus, it 
merges the advantages of M-PCR and nPCR in a single tube, reducing time and 
cost while allowing simultaneous detection of targets [50]. The major milestone 
in PCR utilization was the introduction of the concept of DNA amplification in 
real-time through fluorescence [51]. In real-time PCR, also called quantitative 
PCR (qPCR), the amount of DNA amplicons in the sample is measured after each 
cycle, reflected by the intensity of the fluorescent signal at that specific time. qPCR 
is a high throughput technique that achieves high speed, specificity, and reliabil-
ity while overcoming cross-contaminations during sample handling after ampli-
fication. PCR depends on the efficacy of DNA extraction, and the performance is 
affected by inhibitors present in the sample assay, polymerase activity, PCR buf-
fer, and concentration of deoxynucleoside triphosphate [52]. Even with some 
limitations, the invention of PCR has greatly boosted research in various areas of 
biology, including pathogen identification.  

3.4. Loop-Mediated Isothermal Amplification (LAMP)  

The LAMP (loop-mediated isothermal amplification) has been developed to be 
more easily applied in the field. This approach was first developed by [53] and 
was rapidly adopted for the detection of plant pathogens due to its speed, high 
specificity, sensitivity, efficiency, and isothermal conditions suitable for field 
conditions [54]. LAMP applies the strand displacement activity of Bst DNA po-
lymerase (a polymerase enzyme) from Bacillus stearothermophilus [55] to ampl-
ify the target DNA through two or three pairs of specific primers in an isother-
mal condition. LAMP is a one-step amplification assay that amplifies the target 
DNA or RNA sequence and requires two or three pairs of primers to detect six 
distinct regions in the target sequence [56]. In many research articles, LAMP as-
says have been efficiently used to detect many pathogens, including fungi, bacte-
ria, or viruses [57]. Also, LAMP was able to differentiate related fungal species 
that cause similar symptoms in plant and non-target strains of virulent species 
with lower detection limits. For example, on wheat plants, Zymoseptoria tritici 
and Parastagonospora nodorum often occur together and form the Septoria leaf 
blotch complex [54]. Innovations combining LAMP with other methods also 
promise to improve its effectiveness and usefulness. For instance, combining 
LAMP with a lateral flow dipstick (LFD) enables the assays to be more easily and 
widely applied for field diagnosis [58]. However, despite the advantages, limita-
tions of the LAMP technique include a high risk of cross-contamination and sub-
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sequent false-positive results in controls because of its high efficiency in DNA 
amplification. Also, the target gene fragment is usually short, and the reaction 
products are a series of DNA fragments that are not the same size [54] [56]. 

3.5. Recombinase Polymerase Amplification (RPA) 

Molecular techniques such as PCR and qPCR are widely used and have been 
demonstrated to be highly specific and efficient tools for diagnostics. However, 
the limitations of these methods include the need for a costly thermal cycler, 
stringent thermal cycling conditions, high-quality nucleic acids as a starting point, 
and a skilled operator, and they are relatively time-consuming. Next-generation 
sequencing involves high costs and requires complex data analysis. RT-LAMP 
needs a higher temperature for reaction conditions that are difficult and imprac-
tical in the field [59]. In recent years, alternative isothermal amplification, 
recombinase polymerase amplification (RPA), has become popular and made 
a new focus in nucleic acid detection due to its simplicity and accuracy. RPA 
targets the double-stranded DNA (dsDNA) by recombinase-primer complex and 
amplifies the target region through strand-displacement DNA synthesis [60]. 
Unlike the heat denaturation step in PCR (95˚C), RPA utilizes the Escherichia 
coli RecA (recombinase) and single-strand DNA binding protein (SSB) for DNA 
denaturation. It can successfully amplify targeted DNA sequences at 37˚C - 42˚C 
for 30 min with high sensitivity. The results can be visualized by combining 
them with fluorescence signals, lateral flow assay (LFA), or gel electrophoresis. 
RPA allows for the direct detection of DNA and RNA targets from crude plant 
extracts, equivalent sensitivity to molecular diagnostics such as PCR/RT-PCR, and 
no need for thermocycler equipment. Thus, RPA has the potential to be applied 
and implemented at on-site diagnostics, especially for unwanted plant diseases 
in farms, nurseries, and biosecurity, contributing to timely eradication measures 
and thereby minimizing the risk associated with the spread of the virus [61]. The 
application of RPA in plant pathology is expanding because of the attractive in-
strument simplification, portability, and cost-effectiveness. RPA does not require 
lab equipment in the field and can be easily used in small farms. RPA has been 
reported for the detection of several plant viruses, especially complex viruses 
that coinfect a particular plant. For example, an RPA assay was established to 
simultaneously detect maize chlorotic mottle virus (MCMV) and sugarcane 
mosaic virus (SCMV) that coinfect maize (Figure 1) [59]. Also, modifications 
to RPA described by [62] included a recombinase polymerase amplification 
(RPA)/Cas12a-based system that combines RPA and CRISPR/Cas12a for Xan-
thomonas arboricola pv. pruni (Xap) identification that causes Peach bacterial 
spot. 

3.6. High-Throughput Phenotyping (Precision Agriculture) and  
Genotyping Techniques 

Accurate and timely assessments of plant disease are important for plant disease 
management practices, plant breeding, and improving fungicide efficacy [63].  
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Figure 1. RPA assay for simultaneous detection of MCMV and SCMV [59]. 
 
These reliable assessments also help to forecast temporal and spatial disease 
spread in specific growing regions. While, Next-generation sequencing technol-
ogy has greatly accelerated progress in pathogen detection and functional ge-
nomics [64] [65] [66], allowing quantitative trait locus (QTL) mapping and ge-
nome-wide association studies (GWAS) [67] to become powerful tools for elu-
cidating the genetic architecture of complex traits [64] [68], and many genes 
governing important agronomic traits have been identified [69] [70]. Howev-
er, phenotypic data acquisition is still a challenge restricting crop breeding 
and functional genomics studies [71]. Traditional crop phenotyping in the past 
decades has involved visual estimation, which has become more accurate and re-
liable due to detailed guidelines and standards used for assessment training [72] 
[73]. Nevertheless, visual estimation is always subjective to the rater’s experience 
and can be affected by temporal variation. This variation causes significant in-
terrater variability and changes in interrater repeatability [63] [73] [74]. These 
methods are also labor-intensive, time-consuming, and frequently destructive to 
plants [75] [76]. Therefore, acquiring high-throughput, effective, and compre-
hensive trait data needed to understand the genetic contribution to phenotypic 
variation has become an acute need [77] [78]. Plant phenomics has been defined 
as the high-throughput, accurate acquisition, and analysis of multi-dimensional 
phenotypes during crop growing stages at the organism level, including the cell, 
tissue, organ, individual plant, plot, and field levels [66] [79]. [80] also referred 
to plant phenotyping as the methodologies and protocols used to accurately 
measure plant growth, architecture, and composition at different scales. Inten-
sive research has been done over the years to develop modern phenotypic tools 
that are sensor-based for plant disease detection, identification, and quantifica-
tion [81] [82]. These sensors assess the optical properties of plants within dif-
ferent regions of the electromagnetic spectrum and are able to utilize informa-
tion beyond the visible range (Figure 2) [63] [83]. They enable the detection of 
early changes in plant physiology due to biotic stresses because disease can cause 
modifications in tissue color, leaf shape, transpiration rate, canopy morphology, 
and plant density as well as variation in the interaction of solar radiation with  
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Figure 2. Overview of current sensor technologies used for the automated detection and identification 
of host-plant interactions [63] [83]. 

 
plants [84]. These modern phenomics tools aim at recording data on plant traits 
such as plant growth, biomass, architecture, and photosynthesis for hundreds to 
thousands of plants in a single day [17] [85], with increased precision and accu-
racy in phenotypic trait acquisition coupled with decreased labor input achieved 
by automation, remote control, and data (image) analysis pipelines [77] [78]. 
This shift has driven improvement in phenotyping technologies, which capture 
trait phenotypic data that can be linked to genomics information for crop im-
provement [86]. Thus, providing genetic information rapidly and promoting the 
development of large mapping populations and diversity of lines while pheno-
typing [87]. These tools also help identify important genes and evaluate new 
crop genotypes to improve photosynthesis [88]. For instance, high-throughput 
phenotyping platforms have been demonstrated to enhance GS in grain crops. 
For example, an unmanned aerial vehicle (UAV) carrying a remote-sensing unit 
with either an RGB or near-infrared, green, and blue (NIR-GB) camera has been 
used for the high-throughput phenotyping of sorghum plant height and differ-
ent genomic prediction models [66] [89].  
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3.7. Remote Sensing (RS) and Imaging Technologies 

Remote sensing means sensing things from a distance [90]. The “American So-
ciety for Photogrammetry and Remote Sensing (ASPRS)” defined remote sens-
ing as “the art, science, and technology of obtaining reliable information about 
physical objects and the environment, through the process of recording, mea-
suring and interpreting imagery and digital representations of energy patterns 
derived from non-contact sensor systems” [63]. Sensors may be classified accord-
ing to the following: 

1) The recording principle could be active sensors that emit radiation and meas-
ure the energy reflected (e.g. RADAR (radio detection and ranging), SAR (spe-
cific absorption rate), LIDAR (light detecting and ranging)) or passive sensors; 
measure reflected radiation (e.g. RGB, spectral cameras) [50]. 

2) The type of data recording could be imaging (e.g. RGB, spectral, thermal, 
fluorescence) or non-imaging (e.g. radiometers-spectroradiometers, fluorescence 
radiometers) [91].  

3) The range of the electromagnetic spectrum could be visible (VIS; wavelength 
range, 400 - 700 nm), near-infrared (NIR; wavelength range, 700 - 1100 nm), 
short-wave infrared (SWIR; 1100 - 2500 nm), thermal infrared (TIR; 3 to 15 μm), 
and radar [92]. 

4) The scale/platform used, e.g. remote sensu stricto, airborne and space-
borne, UAV (unmanned aerial vehicle), ground-based/proximal, and micro-
scopic [50]. 

In the last decade, a number of RS systems have been developed, which are 
sensitive, consistent, standard, high throughput, rapid, and cost-effective [93], 
and can potentially be applied for detecting and monitoring plant diseases and 
pests. Few studies have applied active sensors such as SAR and Lidar remote 
sensing in monitoring plant diseases and pests, which might be due to the weak 
relationship between SAR and Lidar parameters and the symptoms of plant dis-
eases and pests [94]. However, many efforts have been made to apply different 
RS systems in capturing the infection symptoms of pests and pathogens. The fol-
lowing describes the most relevantly used passive sensors. 

3.7.1. RGB Cameras 
Digital cameras are easy to handle and are a simple source of RGB (red, green, 
and blue) digital images for disease detection, identification, and quantification 
[63]. RGB sensors are in the visible or infrared bands [50]. RGB-color images 
have been used to detect biotic stress in plants [73]. However, the information 
from the three broad wavebands in the visible range is often insufficient for the 
differentiation of disease symptoms, but the combination with spatial informa-
tion and the availability of advanced image processing methods makes RGB im-
ages a powerful tool in disease perception [91]. For example, several studies have 
used pattern recognition and machine learning tools to detect and identify plant 
diseases from RGB images [95] [96]. A plant disease database for automatic dis-
ease detection and identification that includes 2,326 images of 171 diseases and 
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other disorders affecting 21 plant species was also established by [97]. 

3.7.2. Spectral Imaging Sensors 
Multi- and hyperspectral reflectance sensors assess the spectral information of 
objects in the R, G, and B wavebands and in an additional near-infrared band 
[98]. While multispectral sensors produce broadband reflectance, hyperspectral 
provides spectral and spatial information for the imaged object in a narrow band 
[50] [63]. Hyperspectral data can be observed as huge matrices with spatial x- 
and y-axes and the spectral information as reflectance intensity per waveband in 
the third dimension, z. Thus, spatial resolution strongly influences the detection 
of plant diseases or plant-pathogen interactions [82]. The spectral signature of 
vegetation is influenced by biophysical and biochemical properties describing 
the canopy structure, such as leaf area index, the amount of life and senesced 
biomass, pigment and moisture content, and spatial arrangement of cells and 
structures [99] [100]. In healthy vegetation, reflectance occurs in the three dis-
tinguished spectral domains; however, in diseased and dead leaves, changes in 
reflectance result from modifications of biophysical and biochemical characte-
ristics of plant tissue. Under stress, chlorophyll production may decrease, re-
sulting in less absorption in blue and red bands in palisade cells. So along with 
the green band, red and blue bands are also reflected. Hence, yellow or brown 
color is developed in stressed vegetation [90]. Although differentiation between 
disease symptoms that may occur on a crop independently from each other or 
simultaneously is essential for these operational systems. However, many biotic 
and abiotic stresses can affect the same crop or plant product under the same con-
ditions, and the cause of symptoms is not easily identified [101]. Thus, the uni-
queness of spectral signatures of plant diseases is not universally agreed upon, as 
stress-causing agents and various pathogens often cause similar symptoms under 
spectral imaging systems. Nevertheless, spectral imaging is increasingly used for 
plant phenotyping and crop disease identification, especially in large-scale agri-
culture. Many such research studies are described in the review papers by [63] 
[90] [102] [103] 

3.7.3. Thermal Imaging Sensors 
Thermography allows imaging using the differences in surface temperature of 
plant leaves and canopies and is correlated with plant water status [104] [105], the 
microclimate in crop stands and changes in transpiration due to early infections by 
plant pathogens. Thermal sensors detect radiation emitted in the thermal infrared 
(8 to 14 μm) and display it in false-color images (Figure 3) [12] [103]. Thermal 
imaging may be applied on scales ranging from proximal ground-based equip-
ment to airborne and spaceborne sensors [106] and is suitable for time-series 
measurements and monitoring purposes. This method has been very useful for 
many different operations of agriculture before and after harvesting, site-specific 
crop management, and precision farming [103]. Through analysis of thermal 
images, [107] successfully differentiated biotic (root rot) and abiotic (drought)  
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Figure 3. Description of thermal imaging radiation conversion [103]. 

 
stress in cotton. The potential of thermal techniques in the early detection of 
plant diseases and pests was also confirmed by some other studies [108] [109] 
[110]. However, the practical applicability of thermography for disease moni-
toring is limited due to its high sensitivity to changes in environmental condi-
tions during measurements. Additionally, thermographic detection lacks spe-
cificity toward diseases and cannot be used to distinguish between diseases that 
produce similar thermographic patterns [12]. 

3.7.4. Fluorescence Imaging Sensors 
Chlorophyll fluorescence assesses the photosystem II activity, which is highly 
sensitive to abiotic and biotic stress [111]. Pathogen attack affects the plant’s 
photosynthetic apparatus, e.g. pigments, electron transport chain, and enzymes 
of the Calvin cycle, directly by reducing the photosynthetic leaf area (necrosis) 
and chlorophyll degradation (chlorosis) or indirectly through feedback regula-
tion of the electron transport chain [112]. Thus, fluorescence RS systems meas-
ure the chlorophyll fluorescence on the leaves as a function of the incident light 
and the change in fluorescence parameters by tracking plants’ respiration and 
photosynthetic processes, allowing for pre-symptomatic monitoring of plant 
diseases and pests [94]. Chlorophyll fluorescence’s temporal and spatial varia-
tions were analyzed for precise detection of leaf rust and powdery mildew infec-
tions in wheat leaves at 470 nm [113]. In addition, Fluorescence spectra were 
useful in discriminating brown rust-infected tissue from healthy wheat tissue as 
early as four days after inoculation [114]. Although fluorescence measurement 
provides sensitive detection of abnormalities in photosynthesis, the practical ap-
plication of this technique in a field setting is limited [115]. The patterns of dis-
ease symptoms on the leaf and plant level are often random and may be confused 
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with effects due to arthropod damage [116]. 

3.7.5. Spectroscopy-Based Sensors 
These are non-imaging sensors that often have a high spectral resolution (mea-
suring hundreds of narrow wavebands separately) in the full range, but the spec-
tral information results from the average of the sensor’s field of view. These 
techniques hold particular promise for crop disease monitoring because of their 
potential as operational instruments, flexibility, efficacy, and cost-efficiency [50]. 
The most relevant and recent advances in spectroscopy-based techniques are 
VIS, IR spectroscopy, and Fluorescence spectroscopy. They are based on the in-
herent optical properties of leaf pigments, chemical components, properties, and 
structural characteristics [117]. Many studies have utilized these techniques for 
pathogen detection, as described by [50], and recently a study on the differentia-
tion of winter wheat disease due to pathogens (yellow rust, powdery mildew) 
and insects (wheat aphid) infestation was recently carried out by [118]. 

3.8. Nanotechnology and Biosensors 

The prevailing approach to pest management heavily relies on the utilization of 
pesticides, encompassing insecticides, fungicides, and herbicides. Despite their 
numerous merits, including wide accessibility, rapid efficacy, and dependability, 
pesticides exert detrimental effects on non-target organisms, contribute to the 
resurgence of pest populations, and foster the development of resistance [119]. 
Moreover, approximately 90% of applied pesticides are lost either during or after 
their application [120] [121]. Consequently, there exists a growing impetus to 
formulate cost-effective, environmentally friendly pesticides that demonstrate 
exceptional performance. The realm of nanotechnology has spearheaded the 
creation of innovative concepts and agricultural commodities, holding immense 
promise in addressing the aforementioned challenges. While nanotechnology 
has made significant strides in medicine and pharmacology, its application in 
agriculture has garnered relatively less attention [121] [122]. Nanotechnology 
encompasses the exploration and advancement of research and technology on 
the atomic, molecular, and macromolecular levels, enabling precise manipula-
tion and examination of structures and devices within the range of 1 to 100 na-
nometers [123]. These entities operating within this scale are referred to as na-
noparticles. Nanoparticles exhibit distinctive properties and functionalities that 
deviate significantly from those observed on a larger, bulk scale. Nanotechnolo-
gy has also been used in various fields such as food packaging [124], and medi-
cine [125], and can now be explored in disease management such as gene trans-
fer, plant hormone delivery, water management, and pesticide absorption [126]. 
Although this novel application is relatively new in disease management, it can 
be explored for various disease diagnoses, monitoring, and projecting ahead of 
disease breakout. The integration of nanotechnology in agriculture is currently 
under exploration for a spectrum of applications, encompassing the delivery of 
plant hormones, facilitation of seed germination, optimization of water man-
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agement, transfer of target genes, utilization of nano barcoding, deployment of 
nanosensors, controlled release of agrichemicals [126]. So, in plant disease man-
agement, Nanophytopathology is the use of nanotechnology to protect plants, 
detect diseases, and provide cures to the plants, thereby safeguarding the crops 
against widespread disease while ensuring effective crop protection [127]. Na-
no-sensors are a novel innovation that interacts with single DNA molecules to 
target diseases based on genome-targeted assays and are therefore useful because 
they can help target specific disease detection and probably control [127]. Na-
noparticles can be employed in safeguarding plants through two distinct me-
chanisms: 1) nanoparticles themselves functioning as a safeguard for crops, or 2) 
nanoparticles serving as carriers for pre-existing pesticides or other active sub-
stances, such as double-stranded RNA (dsRNA). These nanoparticles can be 
administered via spray application or through drenching/soaking onto seeds, fo-
liar tissue, or roots. When utilized as carriers, nanoparticles offer various advan-
tages, including a) extension of shelf-life, b) enhancement of the solubility of 
pesticides with poor water solubility, c) mitigation of toxicity, and d) promotion 
of targeted uptake into the intended pest species [128]. Similar to nanoparticles 
in plant pathology is the use of Biosensors. Biosensors are highly specific bio-
molecular probes made up of enzymes and nucleic acids that target molecules 
with high accuracy. They have a broad range in numerous domains, such as sur-
veillance of the pathologic process and discovery, pesticide residue surveillance, 
which may be effective in reducing the dangerous effect of the residue on 
man’s health, improving food safety and quality assurance [129]. For example, 
[130] worked on using a wearable electrochemical biosensor to facilitate on-site 
analysis of organophosphorus pesticides (OPs) on crop surfaces. 

Biosensors can also target specific plant hormones, such as water stressors [131] 
[132] thereby can be useful in the prevention of plant death during drought, 
protection of essential crops, and eventually the sustainability of the food sys-
tems contributing positively to the global economic development. Biosensors 
possess several advantages such as genetically encoded biosensors having the 
capability to swiftly identify fluctuations in the levels and dispersion of plant 
hormones within living cells [133], such that Regiart et al. introduced a micro-
fluidic electrochemical immunosensor designed for the prompt identification of 
Xanthomonas arboricola within walnut plant samples [134]. This on-site diag-
nostic method demonstrated a threefold acceleration compared to ELISA and 
delivered notably enhanced specificity and sensitivity. However, they also have 
some challenges such as the difficulty involved in producing an integrated pesti-
cide analysis for different grades and biosensor usage is labor intensive. There is 
ongoing research into timely identification approaches for this usage [15] [135]. 

3.9. Big Data Analytics and Machine Learning Applications 

Visual examination is frequently used in traditional plant disease detection me-
thods, which can be time-consuming and subjective. As a result, reactions are 
sometimes delayed, and control measures are ineffective. Recent years have seen 
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the development of powerful tools for the early and precise detection of illnesses 
and pests, including remote sensing, imaging technology, and molecular diag-
nostics. Big data analytics and machine learning have completely changed many 
industries, including agriculture, by making it possible to analyze huge, compli-
cated databases and derive insightful information. These technologies have shown 
tremendous potential for detecting plant diseases. [136] used deep learning algo-
rithms to accurately identify and classify plant diseases in aerial photos taken by 
drones. Their method shortened the time needed to diagnose diseases and made 
early intervention and effective management techniques possible. 

Moreover, the exploitation of big data in disease detection has been represented 
by the work of [137] who developed a disease prediction model based on mul-
tiple data sources, including environmental factors, crop phenology, and histor-
ical disease incidence. By integrating these assorted datasets and employing ma-
chine learning algorithms, they successfully predicted the occurrence and sever-
ity of diseases, facilitating targeted interventions and reducing crop losses. In 
addition to big data analytics, the integration of machine learning algorithms has 
enhanced disease detection and management. [138] developed a machine learn-
ing-based decision support system that analyzed real-time sensor data to accu-
rately detect and identify plant diseases (Figure 4) [139]. Their system employed 
various machine learning techniques, such as support vector machines and ran-
dom forests, to classify diseases based on symptom patterns, enabling timely and 
targeted interventions.  

Due to developments in sensors, robotics, artificial intelligence (AI), and data 
interpretation, there are now exciting new options in automated and noninva-
sive plant disease diagnosis. A comprehensive examination of big data analytics  

 

 
Figure 4. Illustration using artificial intelligence for crop disease detection [139]. 
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and machine learning applications in plant disease diagnosis reveals several cru-
cial factors. First, integrating automated plant disease diagnosis systems, leve-
raging the expertise of phytopathology experts along with deep learning convo-
lutional neural network (CNN) algorithms, has shown promise in accurately 
identifying and classifying plant diseases and pests. However, the development 
of precise and efficient CNN models is crucial to ensuring reliable and rapid de-
tection. Moreover, a comprehensive investigation is necessary to understand the 
various factors that impact the detection of plant illnesses. These factors include 
the availability and diversity of datasets, the learning pace of the algorithms, 
lighting conditions, and other relevant aspects. Thorough research in these areas 
is essential for optimizing the performance and effectiveness of disease detection 
systems [140]. Additionally, the integration of robotics technology at the field 
level necessitates a concerted focus on the interplay between artificial machine 
intelligence and natural human intelligence.  

A critical assessment of big data analytics and machine learning applications 
in plant disease detection highlights the requirement for accuracy and speed in 
CNN models and detailed investigations into the factors impacting disease di-
agnosis. While robots and human intelligence interact to highlight the importance 
of continuous agriculture and plant protection research in the digital world, ad-
vances in artificial intelligence and machine learning also present intriguing fu-
ture directions. 

3.10. Hyperspectral Imaging and Artificial Intelligence in Plant  
Disease Detection 

The dependable detection and identification of plant diseases and stress pose sig-
nificant challenges in agriculture. Traditional methods of detection, relying on ma-
nual observation of visible indicator signs, are time-consuming, labor-intensive, 
and often limited to the late stages of infection [141]. Additionally, manual de-
tection requires clear symptoms, which may not be evident in large crop areas or 
at the early stages of disease development. The identification of the causal agent 
typically involves manual detection or diagnostic tests, further adding to the com-
plexity of the process. 

To address these limitations, there is a growing interest in replacing manual 
processes with more automated, objective, and sensitive approaches. One prom-
ising avenue is the utilization of imaging sensors for plant disease detection. 
Various imaging techniques have been explored, including RGB, multispectral, 
hyperspectral, thermal, chlorophyll fluorescence, and 3D sensors (Figure 5) [142] 
[143]. Among these, RGB and hyperspectral imaging have shown a preference 
for identifying specific diseases [101]. 

Machine learning techniques and image analysis offer non-invasive and po-
tentially autonomous approaches for detecting biotic and abiotic stress in plants. 
Researchers have explored high-throughput phenotyping, utilizing various sen-
sors, to identify, classify, quantify, and predict stress. The use of machine learn-
ing algorithms allows for the analysis of large datasets and the extraction of  
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Figure 5. Hyperspectral data retrieval and processing remastered from (A) reflected light 
collection by the hyperspectral camera, (B) a hyperspectral data cube, (C) data norma-
lization, (D) feature extraction, and (E) automation of the classification process [142] 
[143]. 
 
meaningful information from digital images. Hyperspectral imaging, in particu-
lar, has gained attention due to falling technology costs, making it more accessi-
ble to a wide range of users. This approach captures high-fidelity color reflectance 
information over a broad range of the light spectrum, beyond human vision. The 
ability to detect subtle changes in plant growth and development makes hyper-
spectral imaging promising for categorizing and recognizing the early stages of 
plant foliar disease and stress [10]. 

While hyperspectral imaging technologies are not yet provided as turnkey so-
lutions for crop monitoring, advancements in this field and artificial intelligence 
techniques hold significant potential for revolutionizing plant disease detection. 
By providing accurate and early detection of diseases and stress, these technolo-
gies can contribute to improved crop management practices, targeted applica-
tion of chemicals, and reduced environmental impact. However, further research 
and development are needed to refine and integrate hyperspectral imaging and 
artificial intelligence approaches into practical solutions for commercial dep-
loyment in agriculture. Therefore, the integration of sensors, robotics, artificial 
intelligence, and data interpretation has paved the way for automated and non-
invasive detection of plant diseases. The use of deep learning CNN algorithms in 
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automated plant disease diagnosis systems, combined with the expertise of phy-
topathology experts, has shown promise in accurately identifying and classifying 
plant diseases and pests. 

4. Integration of Disease and Pest Management Strategies 

Plants represent the primary source of food and nutrition for man and animals. 
However, plant diseases and pests cause significant damage to these crops, lead-
ing to reduced yields and poor quality of produce [5]. The annual crop yield loss 
caused by pathogens and pests is recently estimated at US$220 billion, directly 
impacting food security on a global scale [144]. This is even more crucial to pre-
vent the devastating potential of emerging diseases or challenging pathogens that 
spread through asymptomatic individuals or hosts with subtle initial symptoms 
[145].  

Therefore, early detection of plant pathogens along with quick, affordable, and 
accurate diagnostics is crucial for effective plant health monitoring and to arrest 
their spread at early stages of development [146]. For example, one of the world’s 
deadliest plant pathogens, Xyllela fastidiosa subsp. pauca strain De Donno, de-
stroys olive trees at an incredible rate, and unfortunately, it remains asympto-
matic several months after initial infection, allowing the pathogen to spread un-
noticed. 

Given that traditional plant disease detection methods are laborious, time- 
consuming, error-prone, and generally inefficient, adopting advanced technolo-
gies such as remote sensing techniques, imaging technologies, machine learning 
and deep learning, and molecular diagnostics can be a powerful tool to over-
come these shortcomings, allowing for early detection and prevention of plant 
diseases [83] [147]. Generally, the advantages of timely detection such as prompt 
intervention and reduced reliance on pesticides hinges substantially on early de-
tection, and as a result fix many social, economic, environmental, and health 
problems [148]. 

Because of these limitations, effective disease and pest management strategies 
are required. Integrated pest management (IPM) is a promising approach that 
combines sustainable and holistic methods to combat crop pests and pathogens. 
This method suppresses pests and pathogens to economically insignificant levels 
[149] while addressing environmental concerns by combining biological and 
chemical controls [148].  

Proactive measures such as early detection and monitoring play a crucial role 
in implementing timely interventions to prevent disease spread thereby reducing 
economic losses. Adopting sophisticated technologies such as remote sensing, 
imaging, and molecular diagnostics, for example, facilitates rapid, accurate, and 
cost-effective identification of diseases, including those in the early stages of de-
velopment.  

4.1. Precision Agriculture and Targeted Treatment 

Precision agriculture (PA) techniques and targeted treatment are instrumental in 
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optimizing plant health while minimizing the negative environmental impacts of 
disease and pest management practices. Infusing PA technologies such as ad-
vanced geoinformatics, computing and sensing infrastructure, and artificial in-
telligence into pest and disease control strategies would improve crop productiv-
ity and guarantee environmental sustainability through precise monitoring and 
forecasting of pests and diseases [148] [150]. For instance, in containing the de-
vastating effects of late wilt disease (LWD) caused by Magnaporthiopsis maydis 
in maize, [151] deployed remote sensing to evaluate maize cultivars’ resistance 
or sensitivity to LWD. This approach facilitated the simultaneous scanning and 
evaluation of a considerable number of plants, thereby enabling the early detec-
tion of symptomatic individuals and the identification of disease hotspots within 
the field [151]. 

Additionally, findings showed that integration of sensing drones equipped with 
infrared, thermal or audio sensors can effectively detect and identify damage caused 
by pests, as well as the presence of the pests themselves [148]. 

4.2. Integrated Pest Management (IPM) Approaches 

An essential aspect of IPM is the incorporation of diverse methods and leverag-
ing on their collective effects rather than relying solely on individual impacts 
[149]. IPM can be conceptualized as a multi-layered defense system. It begins 
with preventive measures, followed by biological controls, cultural practices, and 
physical barriers. Chemical control is used as a last resort if other actions fail to 
prevent pests from causing significant damage. Advanced disease detection tech-
niques would improve the effectiveness of IPM approaches by providing accu-
rate and timely information regarding pest presence and abundance. This helps 
farmers to make informed decisions on the best pest control measures to engage 
thereby minimizing their reliance on the use of broad-spectrum pesticides. Exam-
ples such as the USDA IPM program and California’s wine industry demonstrate 
successful implementation of IPM strategies [152] [153]. These approaches effec-
tively manage pests, minimize pesticide usage, and maintain crop quality. 

4.3. Decision Support Systems for Disease Management 

Decision support systems (DSS) are computer-based tools that help farmers and 
agronomists make informed decisions about managing diseases in crops, espe-
cially in complex and uncertain conditions [154]. Many DSS platforms in the 
USA are internet-based. They predict disease by utilizing weather data, crop in-
formation, and management data. Users input their field location, and the sys-
tem retrieves their current weather data as well as the forecast data from the near-
est station. Using this information, along with crop and management details, the 
DSS runs disease forecasting systems and a validated disease model to predict 
disease risks for various crops.  

5. Implication for Food Security 

Plant disease detection techniques have a significant impact on food security and 
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offer a potential solution to reduce the negative impact of crop diseases on agri-
cultural productivity. By improving disease detection, prevention and control, these 
technologies can help ensure stable food production and reduce yield losses caused 
by crop diseases. 

5.1. Early Detection and Rapid Response  

Advanced plant disease detection techniques enable early detection of diseases, 
enabling rapid response to prevent their spread. Remote sensing techniques such 
as hyperspectral imaging and thermal imaging can detect subtle changes in plant 
physiology and detect early stages of disease [63]. Early detection helps farmers 
implement targeted interventions, such as the use of pesticides and the removal 
of infected plants, to prevent the spread of disease and minimize crop losses 
[16]. [83] reported that techniques such as remote sensing, hyperspectral imag-
ing, and unmanned aerial vehicles (UAVs) equipped with multispectral sensors 
enable early detection of disease symptoms. Similarly, satellite imagery and un-
manned aerial vehicles (UAVs) combined with hyperspectral imaging and ma-
chine learning algorithms can detect subtle changes in crop health and identify 
potential disease outbreaks for immediate intervention and management [155]. 
Improvements in disease surveillance systems, such as geographic information 
systems (GIS), have enabled the creation of disease risk maps and early warning 
systems [145] [156], providing decision-makers with timely information on 
disease outbreaks, enabling targeted interventions and reducing the likelihood 
of infection and massive crop failure. Molecular techniques such as polymerase 
chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and 
next-generation sequencing (NGS) are revolutionizing disease diagnostics [157], 
this could enable rapid and accurate disease detection. Plant disease detection 
integrated with data analytics and machine learning algorithms facilitates disease 
monitoring and forecasting. [158] reported that predictive models can predict 
disease outbreaks by analyzing historical disease data and environmental para-
meters, allowing farmers to take preventative measures. This approach improves 
the decision-making process and helps farmers optimize their disease control 
strategies. 

5.2. Disease-Resistant Crop Development 

Advanced techniques such as molecular markers and genomic selection are faci-
litating the development of disease-resistant plant cultivars. These techniques 
allow breeders to efficiently identify and select plants with desirable resistance 
traits [159]. By accelerating the breeding process, these techniques help produce 
improved varieties with increased resistance to disease, thereby reducing yield 
losses and increasing crop production. These techniques can help control emerg-
ing and re-emerging plant diseases, protect crop yields, and ensure food availa-
bility by improving the speed and accuracy of breeding. These strains have genetic 
traits that confer resistance or resistance to specific pathogens. By incorporating 
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resistance genes, breeders can make plants more resistant to disease and reduce 
yield loss [160] [161]. [162] reported the use of genetically modified Bt cotton cul-
tivars significantly reduced losses due to pest invasion. Disease-resistant crops can 
resist infection, reduce yield loss, and improve crop production.  

5.3. Biosecurity and Global Trade 

Rapid and accurate crop disease detection plays a key role in maintaining biose-
curity and supporting global food trade. Early detection helps prevent the intro-
duction and spread of new and exotic plant diseases across regions and countries 
[163]. This ensures the integrity of the food supply chain, avoids trade disrup-
tions and protects the agricultural economies. International collaboration and 
knowledge sharing among researchers, policymakers and farmers can be facili-
tated. Platforms such as the Global Plant Health Information Network (GPHIN), 
the Digital Surveillance Network and the International Plant Protection Conven-
tion (IPPC) enable the exchange of information, best practices and early warning 
systems for controlling crop diseases at a global level. Such cooperation will 
strengthen global preparedness and collective responses to combat emerging 
crop diseases and ensure food security around the world. Improvements in crop 
disease detection systems also play an important role in adapting agriculture to 
climate change, as changes in climatic conditions can affect disease patterns. By 
integrating climate data and disease models, farmers and researchers can predict 
disease outbreaks, adapt cropping systems, implement proactive management 
strategies, and ultimately improve food security [164].  

5.4. Environmental and Ethical Considerations 

While these techniques described above offer promising solutions for controlling 
crop diseases and improving crop productivity, they also raise certain concerns 
and implications that need to be carefully considered. The use of genetically 
modified organisms (GMOs) and synthetic pesticides may raise concerns about 
unintended ecological consequences, such as the spread of transgenes into wild 
populations and the development of pest resistance. Increased use of synthetic 
pesticides can cause water pollution and damage to non-target organisms, which 
can impact the environment. The introduction of advanced disease detection 
technologies could impact smallholder farmers and developing countries. Access 
to advanced technologies and the resources needed to implement them such as 
genetically modified seeds and precision farming equipment are restricted and 
can be expensive. This could exacerbate existing inequalities in agricultural pro-
duction and access to markets, potentially disadvantaging smallholder farmers 
and widening disparities between developed and developing regions. Further-
more, the development and use of these techniques raise ethical questions re-
lated to genetic engineering and biotechnology. Critics may argue that altering 
the genetic makeup of plants and introducing foreign genes into the food supply 
chain may have long-term health consequences that are not yet fully understood. 

https://doi.org/10.4236/ajps.2023.1411086


M. A. John et al. 
 

 

DOI: 10.4236/ajps.2023.1411086 1281 American Journal of Plant Sciences 
 

Additionally, its regulations can be complex, raising concerns about transparen-
cy, public engagement, and potential corporate control over farming systems. 
Biodiversity can be lost, making agricultural systems less resilient. Over-reliance 
on a limited number of genetically modified crops or uniform crop varieties can 
make food production more susceptible to disease outbreaks and environmental 
changes. Conserving diverse crop varieties and maintaining the resilience of 
agroecosystems is critical for long-term food security. 

In summary, advanced crop disease detection techniques have far-reaching im-
plications for food security. Early detection and rapid response, improved dis-
ease control, improved disease surveillance and sustainable crop production are 
key outcomes that help reduce crop losses and ensure a stable food supply. Timely 
interventions can reduce pesticide dependence and minimize the environmental 
impacts associated with excessive pesticide use. In addition, early disease detec-
tion and control measures help maintain crop productivity and quality, ensure 
food security, and reduce the economic burden on farmers. 

6. Challenges and Future Directions 

Incorporating advanced techniques for plant disease detection into disease and 
pest management strategies comes with both opportunities and challenges that 
need to be addressed for their successful implementation [165].  

One major challenge in adopting advanced plant disease detection techniques 
is the limited availability and accessibility of necessary technology and infrastruc-
ture [137]. Implementing technologies like remote sensing and hyperspectral im-
aging comes at a high cost [166], coupled with the need for strong internet con-
nectivity in rural areas, may hinder their widespread adoption among farmers 
and agronomists. Bridging this gap requires efforts to make these technologies 
more affordable, user-friendly, and accessible to smallholder farmers.  

The persistent lack of integration of research programs has been a significant 
setback for decades, and this issue continues to prevail today [167]. The adop-
tion of decision support systems for disease management has often been slow. 
This delay can be attributed to the unaddressed technical and perceptual limita-
tions that arise during the development and implementation stages [168]. The 
growers’ perceptions of risks and uncertainties associated with these techniques 
are also factors that contribute to the neglect of these valuable tools. Educating 
farmers and decision-makers about the benefits and effectiveness of these sys-
tems can help overcome skepticism and promote their adoption. 

Although plant disease detection methods have come a long way, further ex-
ploration is needed to improve the precision and sensitivity of current methods. 
Research in machine learning should focus on pre-training networks to improve 
results, particularly in the field of plant disease detection [169] [170]. However, 
some techniques such as deep learning require a larger amount of data, and 
current datasets are often small and lack sufficient images for accurate deci-
sion-making. The lack of real-life situational images in available datasets and the 
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inability to detect multiple diseases or occurrences of the same disease in a single 
image are also other aspects calling for improvement [171] [172]. Efforts should be 
directed towards creating larger, diverse datasets to enhance the accuracy and 
applicability of machine learning algorithms. 

The invention of smartphone-integrated electronic readers and flexible sen-
sors is causing exciting strides in plant disease detection [145]. These innovations 
allow for real-time plant monitoring and enable rapid in-flight assays. These ad-
vancements eliminate the need for time-consuming sample collection and analysis, 
thus enabling efficient emergency response and agricultural bio-surveillance. Em-
bracing interdisciplinary approaches like climate-smart pest management (CSPM) 
can enhance food security by fostering collaboration and synergy among farmers, 
researchers, extension workers and stakeholders from the public and private sec-
tors [173] [174]. This holistic approach bridges the gap between research and the 
agricultural community, thereby ensuring the effective implementation of dis-
ease management strategies.  

In addition, the integration of recent advancements in wearable sensing, IoT 
technologies, and remote sensing techniques such as satellite imagery holds prom-
ise for effectively combating plant pathogens and pests [175]. This interconnected 
approach can provide real-time monitoring, precise disease detection and tar-
geted interventions that contribute to more sustainable and efficient agricultural 
practices. 

While these advanced techniques offer promising solutions for disease and pest 
management, it is imperative to consider their socioeconomic and environmen-
tal implications. It is crucial to evaluate the issues pertaining to affordability, fair 
access, and ethical concern associated with the use of genetically modified or-
ganisms and synthetic pesticides to ensure inclusive and sustainable agricultural 
practices. 

In conclusion, addressing the challenges and exploring future research direc-
tions in plant disease detection will serve to bolster effective and sustainable dis-
ease and pest management strategies, which will ultimately enhance food securi-
ty and ensure a stable food supply for a growing global population. 
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