Microbial Food Safety Risks Associated with Fresh and Thawed Catfish Fillets during Refrigerated Storage

DOI: 10.4236/fns.2018.911090   PDF   HTML   XML   510 Downloads   903 Views  


Fish processing environment is very favorable for the growth of microorganisms and highlights a potential risk associated with microbial hazards. The present study investigated the growth behavior of aerobic bacteria, yeasts and molds, and bacterial pathogens or surrogate (Listeria monocytogenes and Clostridium sporogenes) on thawed and fresh catfish fillets during refrigerated storage (5°C - 7°C). Thawed and fresh fillets were respectively inoculated with L. monocytogenes and C. sporogenes, and packaged in LDPE bags. In uninoculated catfish, the populations of aerobic bacteria, and yeasts and molds increased significantly (P < 0.05) after 24 h of storage. The acceptable microbial limit was exceeded by aerobic bacteria (7.446 log CFU/g) after 4 days, and yeasts and molds (2.97 log CFU/g) after 3 days of refrigerated storage. Listeria population increased by 1.51 log CFU/g on thawed catfish after 6 days of storage. However, there was no significant increase in growth of C. sporogenes vegetative cells on fresh catfish fillets. These results indicated that the microbiological quality of refrigerated thawed catfish would become unacceptable within 3 - 4 days. Our results also implied that environmental pathogens such as L. monocytogenes and Clostridium sp. can survive on catfish fillets for extended periods during refrigerated storage. Proper sanitation and hygienic practices are essential to control microbial hazards during handling and processing of catfish fillets.

Share and Cite:

Nguyen, T. , Adhikari, A. , Bhattacharya, D. , Chhetri, V. and Kharel, K. (2018) Microbial Food Safety Risks Associated with Fresh and Thawed Catfish Fillets during Refrigerated Storage. Food and Nutrition Sciences, 9, 1261-1272. doi: 10.4236/fns.2018.911090.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Centers for Disease Control and Prevention (CDC). (2017) Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet 2017 Preliminary Data.
[2] Gandhi, M. and Chikindas, M.L. (2007) Listeria: A Foodborne Pathogen that Knows How to Survive. International Journal of Food Microbiology, 113, 1-15.
[3] Pao, S., Ettinger, M., Khalid, M., Reid, A. and Nerrie, B. (2008) Microbial Quality of Raw Aquacultured Fish Fillets Procured from Internet and Local Retail Markets. Journal of Food Protection, 71, 1544-1549.
[4] Nirmal, N.P. and Benjakul, S. (2010) Effect of Catechin and Ferulic Acid on Melanosis and Quality of Pacific White Shrimp Subjected to Prior Freeze-Thawing during Refrigerated Storage. Food Control, 21, 1263-1271. https://doi.org/10.1016/j.foodcont.2010.02.015
[5] Suvanich, V., Marshall, D. and Jahncke, M. (2000) Microbiological and Color Quality Changes of Channel Catfish Frame Mince during Chilled and Frozen Storage. Journal of Food Science, 65, 151-154.
[6] Jami, M., Ghanbari, M., Zunabovic, M., Domig, K.J. and Kneifel, W. (2014) Listeria monocytogenes in Aquatic Food Products—A Review. Comprehensive Reviews in Food Science and Food Safety, 13, 798-813.
[7] Harrison, M.A., Huang, Y.-W., Chao, C.-H. and Shineman, T. (1991) Fate of Listeria monocytogenes on Packaged, Refrigerated, and Frozen Seafood. Journal of Food Protection, 54, 524-527.
[8] Food and Drug Administration. (2011) Fish and Fishery Products Hazards and Controls Guidance. Fourth Edition, April 2011.
[9] DeWitt, C.A.M. and Oliveira, A. (2016) Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods, 5, 48. https://doi.org/10.3390/foods5030048
[10] Hernández-Macedo, M.L., Barancelli, G.V. and Contreras-Castillo, C.J. (2011) Microbial Deterioration of Vacuum-Packaged Chilled Beef Cuts and Techniques for Microbiota Detection and Characterization: A Review. Brazilian Journal of Microbiology, 42, 1-11.
[11] Wang, S., Brunt, J., Peck, M.W., Setlow, P. and Li, Y.-Q. (2017) Analysis of the Germination of Individual Clostridium sporogenes Spores with and without Germinant Receptors and Cortex-Lytic Enzymes. Frontiers in Microbiology, 8, 2047. https://doi.org/10.3389/fmicb.2017.02047
[12] Juck, G., Neetoo, H. and Chen, H. (2010) Application of an Active Alginate Coating to Control the Growth of Listeria monocytogenes on Poached and Deli Turkey Products. International Journal of Food Microbiology, 142, 302-308. https://doi.org/10.1016/j.ijfoodmicro.2010.07.006
[13] Adhikari, A., Yemmireddy, V.K., Costello, M.J., Gray, P.M., Salvadalena, R., Rasco, B. and Killinger, K. (2018) Effect of Storage Time and Temperature on the Viability of E. coli O157:H7, Salmonella spp., Listeria innocua, Staphylococcus aureus, and Clostridium sporogenes Vegetative Cells and Spores in Vacuum-Packed Canned Pasteurized Milk Cheese. International Journal of Food Microbiology, 286, 148-154. https://doi.org/10.1016/j.ijfoodmicro.2018.07.027
[14] Suvanich, V. and Marshall, D.L. (1998) Influence of Storage Time and Temperature on Quality of Catfish (Ictalurus punctatus) Frames. Journal of Aquatic Food Product Technology, 7, 61-74.
[15] International Commission for the Microbiological Specifications for Foods (ICMSF). (2011) Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance. Springer, New York.
[16] Hoel, S., Jakobsen, A.N. and Vadstein, O. (2017) Effects of Storage Temperature on Bacterial Growth Rates and Community Structure in Fresh Retail Sushi. Journal of Applied Microbiology, 123, 698-709.
[17] Latip, L.D., Zzaman, W. and Yang, T.A. (2013) Effect of Chilled-Frozen Storage on the Physico-Chemical, Microbial and Sensory Quality of Farmed Bighead Carp (Hypophthalmichthys nobilis). Journal of Fisheries and Aquatic Science, 8, 686-696.
[18] Ercolini, D., Russo, F., Torrieri, E., Masi, P. and Villani, F. (2006) Changes in the Spoilage-Related Microbiota of Beef during Refrigerated Storage under Different Packaging Conditions. Applied and Environmental Microbiology, 72, 4663-4671. https://doi.org/10.1128/AEM.00468-06
[19] (2017) Microbiological Specifications for Foods: Developing Specifications and Testing Options for Out of Specification Results.
[20] Stansby, M.E., Pottinger, S.R. and Miyauchi, D.T. (1956) Refrigeration of Fish—Part Three. Factors to Be Considered in the Freezing and Cold Storage of Fishery Products. NOAA National Marine Fisheries Service Scientific Publications Office.
[21] Farber, J. (1991) Listeria monocytogenes in Fish Products. Journal of Food Protection, 54, 922-924. https://doi.org/10.4315/0362-028X-54.12.922
[22] Fernandes, C.F., Flick, G.J. and Thomas, T.B. (1998) Growth of Inoculated Psychrotrophic Pathogens on Refrigerated Fillets of Aquacultured Rainbow Trout and Channel Catfish. Journal of Food Protection, 61, 313-317. https://doi.org/10.4315/0362-028X-61.3.313
[23] Jafari, A., Jafarpour, A. and Safari, R. (2017) Influence of Chitosan Nanocomposite and Rosemary (Rosmarinus officinalis L.) Extract Coating on Quality of Huso huso Fillet Inoculated with Listeria monocytogenes during Refrigerated Storage. Journal of Aquatic Food Product Technology, 26, 675-685. https://doi.org/10.1080/10498850.2016.1266427
[24] Liu, C., Mou, J. and Su, Y.-C. (2016) Behavior of Salmonella and Listeria monocytogenes in Raw Yellowfin Tuna during Cold Storage. Foods, 5, 16. https://doi.org/10.3390/foods5010016
[25] Rajkowski, K.T. and Sommers, C. (2012) Effect of Trisodium Phosphate or Water Dip on the Survival of Salmonella and Listeria monocytogenes Inoculated Catfish before and after Freezing. Journal of Aquatic Food Product Technology, 21, 39-47.
[26] Altuntas, E.G., Kocan, D., Cosansu, S., Ayhan, K., Juneja, V.K. and Materon, L. (2012) Antibiotic and Bacteriocin Sensitivity of Listeria monocytogenes Strains Isolated from Different Foods. Food and Nutrition Sciences, 3, 363-368. https://doi.org/10.4236/fns.2012.33052
[27] Rutherford, T.J., Marshall, D.L., Andrews, L.S., Coggins, P.C., Schilling, M.W. and Gerard, P. (2007) Combined Effect of Packaging Atmosphere and Storage Temperature on Growth of Listeria monocytogenes on Ready-to-Eat Shrimp. Food Microbiology, 24, 703-710.
[28] Hwang, C.-A., Sheen, S. and Juneja, V. (2011) Effects of Sodium Lactate on the Survival of Listeria monocytogenes, Escherichia Coli O157:H7, and Salmonella spp. in Cooked Ham at Refrigerated and Abuse Temperatures. Food and Nutrition Sciences, 2, 464-470.
[29] Wong, W.C., Pui, C.F., Chilek, T.Z.T., Noorlis, A., Tang, J.Y.H., Nakaguchi, Y., Nishibuchi, M. and Radu, S. (2011) Survival of Listeria monocytogenes during Frying of Chicken Burger Patties. Food and Nutrition Sciences, 2, 471-475. https://doi.org/10.4236/fns.2011.25067
[30] Barman, S., Ghosh, R. and Mandal, N.C. (2014) Use of Bacteriocin Producing Lactococcus lactis subsp. lactis LABW4 to Prevent Listeria monocytogenes Induced Spoilage of Meat. Food and Nutrition Sciences, 5, 2115-2123. https://doi.org/10.4236/fns.2014.522224
[31] Simjee, S. (2007) Foodborne Diseases. Humana Press, Totowa.
[32] Al-Qadiri, H., Sablani, S.S., Ovissipour, M., Al-Alami, N., Govindan, B. and Rasco, B. (2015) Effect of Oxygen Stress on Growth and Survival of Clostridium perfringens, Campylobacter jejuni, and Listeria monocytogenes under Different Storage Conditions. Journal of Food Protection, 78, 691-697. https://doi.org/10.4315/0362-028X.JFP-14-427
[33] Cai, P., Harrison, M.A., Huang, Y.-W. and Silva, J.L. (1997) Toxin Production by Clostridium botulinum Type E in Packaged Channel Catfish. Journal of Food Protection, 60, 1358-1363.
[34] Chhetri, V.S. and Karki, T.B. (2014) Occurrence of Clostridium perfringes in Raw Meat, Poultry and Meat Spices and Effect of Sodium Chloride and Reduced pH on the Outgrowth of Their Spores. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 14, 885-890.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.