Share This Article:

A Game-Theoretic Model for Bystanders’ Behaviour in Classes with Bullying

Abstract Full-Text HTML XML Download Download as PDF (Size:292KB) PP. 97-102
DOI: 10.4236/jss.2015.39015    3,132 Downloads   3,531 Views   Citations

ABSTRACT

In this paper, the behaviour of bystanders in a classroom in which bullying is occurring is analyzed using Game theory. We focus on bystander’s behaviour and formulate a threshold model. Our analysis shows that as class sizes become smaller, the probability of bullying being stopped increases.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Isada, Y. , Igaki, N. and Shibata, A. (2015) A Game-Theoretic Model for Bystanders’ Behaviour in Classes with Bullying. Open Journal of Social Sciences, 3, 97-102. doi: 10.4236/jss.2015.39015.

References

[1] MEXT (2011) Heisei 23 nendo “Jidou seito no mondai koudou nado seito shidoujou no shomondai ni kan suru chousa kekka ni tsuite” [Results of the 2011 Survey of Problem Behavior of Students and Various Issues with Instructing Students]. http://www.mext.go.jp/b_menu/houdou/24/09/__icsFiles/afieldfile/2012/09/11/1325751_01.pdf.
[2] Morita, Y. (2010) Ijime to ha nani ka [What Is Bullying]. Chuko Shinsho, Tokyo.
[3] Shibata, A., Mori, T., Okamura, M. a Soyama, N. (2008) An Economic Analysis of Apathetic Behavior: Theory and Experiment. The Journal of Socio-Economics, 37, 90-107. http://dx.doi.org/10.1016/j.socec.2006.12.026
[4] Glass, G.V. and Smith, M.L. (1979) Meta-Analysis of Research on Class Size and Achievement. Educational Evaluation and Policy Analysis, 1, 2-16. http://dx.doi.org/10.3102/01623737001001002
[5] Smith, M.L. and Glass, G.V. (1980) Meta-Analysis of Research on Class Size and Its Relationship to Attitudes and Instruction. American Educational Research Journal, 17, 419-433. http://dx.doi.org/10.3102/00028312017004419
[6] Nash, J. (1950) Equilibrium Points in n-Person Games. Proceed-ings of the National Academy of Sciences of the United States of America, 36, 48-49. http://dx.doi.org/10.1073/pnas.36.1.48
[7] Nash, J. (1951) Non-Cooperative Games. Annals of Mathematics Second Series, 54, 286-295. http://dx.doi.org/10.2307/1969529

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.