Share This Article:

STAT3 Signaling in Cancer

Abstract Full-Text HTML XML Download Download as PDF (Size:1127KB) PP. 709-726
DOI: 10.4236/jct.2015.68078    4,294 Downloads   5,588 Views   Citations

ABSTRACT

In recent years, signal transducers and activators of transcription (STAT) proteins have been recognized as cytoplasmic transcription factors that mediate extracellular signaling to the nucleus controlling fundamental functions, such as cell proliferation, apoptosis, differentiation, immune responses and angiogenesis. Among them, STAT3 is a major player, aberrant activation of which is involved in several diseases, including cancer. Among other upstream regulators, IL-6/Jak signaling can activate STAT3 and its role appears to be critical in various types of cancer. Although STAT3 has been traditionally recognized as amoncogene, more recently the dual role of STAT3 in cancer, either tumor inductive or suppressive, has been appreciated. The importance and differential effect of STAT3 on tyrosine or serine residues are also a matter of continuing debate. Interestingly, recent findings suggesting that STAT3 plays an important role in cancer stem cell regulation have gained significant attention. This review summarizes current literature focusing on the significance of STAT3 in several diseases as well as in cancer. Understanding the complexity of STAT3 function has the potential to elucidate important molecular aspects of cancer with significant therapeutic implications.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Gkouveris, I. , Nikitakis, N. and Sauk, J. (2015) STAT3 Signaling in Cancer. Journal of Cancer Therapy, 6, 709-726. doi: 10.4236/jct.2015.68078.

References

[1] Darnell Jr., J.E., Kerr, I.M. and Stark, G.R. (1994) Jak-STAT Pathways and Transcriptional Activation in Response to IFNs and Other Extracellular Signaling Proteins. Science, 264, 1415-1421.
http://dx.doi.org/10.1126/science.8197455
[2] Lai, S.Y. and Johnson, F.M. (2010) Defining the Role of the JAK-STAT Pathway in Head and Neck and Thoracic Malignancies: Implications for Future Therapeutic Approaches. Drug Resistance Updates, 13, 67-78.
http://dx.doi.org/10.1016/j.drup.2010.04.001
[3] Mali, S.B. (2015) Review of STAT3 (Signal Transducers and Activators of Transcription) in Head and Neck Cancer. Oral Oncology, 51, 565-569.
http://dx.doi.org/10.1016/j.oraloncology.2015.03.004
[4] Xiong, A., Yang, Z., Shen, Y., Zhou, J. and Shen, Q. (2014) Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers (Basel), 6, 926-957.
http://dx.doi.org/10.3390/cancers6020926
[5] Siveen, K.S., Sikka, S., Surana, R., Dai, X., Zhang, J., Kumar, A.P., Tan, B.K., Sethi, G. and Bishayee, A. (2014) Targeting the STAT3 Signaling Pathway in Cancer: Role of Synthetic and Natural Inhibitors. Biochimica et Biophysica Acta, 1845, 136-154.
[6] Subramaniam, A., Shanmugam, M.K., Perumal, E., Li, F., Nachiyappan, A., Dai, X., et al. (2013) Potential Role of Signal Transducer and Activator of Transcription (STAT)3 Signaling Pathway in Inflammation, Survival, Proliferation and Invasion of Hepatocellular Carcinoma. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1835, 46-60.
http://dx.doi.org/10.1016/j.bbcan.2012.10.002
[7] Hix, L.M., Karavitis, J., Khan, M.W., Shi, Y.H., Khazaie, K. and Zhang, M. (2013) Tumor STAT1 Transcription Factor Activity Enhances Breast Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells. Journal of Biological Chemistry, 288, 11676-11688.
http://dx.doi.org/10.1074/jbc.M112.441402
[8] Adámková, L., Soucková, K. and Kovarík, J. (2007) Transcription Protein STAT1: Biology and Relation to Cancer. Folia Biologica (Praha), 53, 1-6.
[9] Boudny, V., Kocak, I., Lauerova, L. and Kovarik, J. (2003) Interferon Inducibility of STAT 1 Activation and Its Prognostic Significance in Melanoma Patients. Folia Biologica (Praha), 49, 142-146.
[10] Bowman, T., Garcia, R., Turkson, J. and Jove, R. (2000) STATs in Oncogenesis. Oncogene, 19, 2474-2488.
http://dx.doi.org/10.1038/sj.onc.1203527
[11] Buettner, R., Mora, L.B. and Jove, R. (2002) Activated STAT Signaling in Human Tumors Provides Novel Molecular Targets for Therapeutic Intervention. Clinical Cancer Research, 8, 945-954.
[12] Kovarik, A., Fojtova, M., Boudny, V., Adamkova, L., Lauerova, L. and Kovarik, J. (2005) Interferon γ but Not α Induce SOCS 3 Expression of Human Melanoma Cell Lines. Melanoma Research, 15, 481-488.
http://dx.doi.org/10.1097/00008390-200512000-00001
[13] Steen, H.C. and Gamero, A. (2012) The Role of Signal Transducer and Activator of Transcription-2 in the Interferon Response. Journal of Interferon & Cytokine Research, 32, 103-110.
http://dx.doi.org/10.1089/jir.2011.0099
[14] Hirano, T., Ishihara, K. and Hibi, M. (2000) Roles of STAT3 in Mediating the Cell Growth, Differentiation and Survival Signals Relayed through the IL-6 Family of Cytokine Receptors. Oncogene, 19, 2548-2556.
http://dx.doi.org/10.1038/sj.onc.1203551
[15] Mandal, T., Bhowmik, A., Chatterjee, A., Chatterjee, U., Chatterjee, S. and Ghosh, M.K. (2014) Reduced Phosphorylation of Stat3 at Ser-727 Mediated by Casein Kinase 2—Protein Phosphatase 2A Enhances Stat3 Tyr-705 Induced Tumorigenic Potential of Glioma Cells. Cellular Signalling, 26, 1725-1734.
http://dx.doi.org/10.1016/j.cellsig.2014.04.003
[16] Chen, R.J., Ho, Y.S., Guo, H.R. and Wang, Y.J. (2008) Rapid Activation of Stat3 and ERK1/2 by Nicotine Modulates Cell Proliferation in Human Bladder Cancer Cells. Toxicological Sciences, 104, 283-293.
http://dx.doi.org/10.1093/toxsci/kfn086
[17] Grivennikov, S.I. and Karin, M. (2010) Dangerous Liaisons: STAT3 and NF-κB Collaboration and Crosstalk in Cancer. Cytokine & Growth Factor Reviews, 21, 11-19.
http://dx.doi.org/10.1016/j.cytogfr.2009.11.005
[18] Frucht, D.M., Aringer, M., Galon, J., Danning, C., Brown, M., Fan, S., et al. (2000) Stat4 Is Expressed in Activated Peripheral Blood Monocytes, Dendritic Cells, and Macrophages at Sites of Th1-Mediated Inflammation. The Journal of Immunology, 164, 4659-4664.
http://dx.doi.org/10.4049/jimmunol.164.9.4659
[19] Wurster, A.L., Tanaka, T. and Grusby, M.J. (2000) The Biology of Stat4 and Stat6. Oncogene, 19, 2577-2584.
http://dx.doi.org/10.1038/sj.onc.1203485
[20] Visconti, R., Gadina, M., Chiariello, M., Chen, E.H., Stancato, L.F., Gutkind, J.S. and O’Shea, J.J. (2000) Importance of the MKK6/p38 Pathway for Interleukin-12-Induced STAT4 Serine Phosphorylation and Transcriptional Activity. Blood, 96, 1844-1852.
[21] Wang, Y., Qu, A.J. and Wang, H. (2015) Signal Transducer and Activator of Transcription 4 in Liver Diseases. International Journal of Biological Sciences, 11, 448-455.
http://dx.doi.org/10.7150/ijbs.11164
[22] Schindler, C. and Plumlee, C. (2008) Inteferons Pen the JAK-STAT Pathway. Seminars in Cell & Developmental Biology, 19, 311-318.
http://dx.doi.org/10.1016/j.semcdb.2008.08.010
[23] Kosan, C., Ginter, T., Heinzel, T. and Kramer, O.H. (2013) STAT5 Acetylation: Mechanisms and Consequences for Immunological Control and Leukemogenesis. JAK-STAT, 2, Article ID: e26102.
http://dx.doi.org/10.4161/jkst.26102
[24] Soldaini, E., John, S., Moro, S., Bollenbacher, J., Schindler, U. and Leonard, W.J. (2000) DNA Binding Site Selection of Dimeric and Tetrameric Stat5 Proteins Reveals a Large Repertoire of Divergent Tetrameric Stat5a Binding Sites. Molecular and Cellular Biology, 20, 389-401.
http://dx.doi.org/10.1128/MCB.20.1.389-401.2000
[25] John, S., Vinkemeier, U., Soldaini, E., Darnell Jr., J.E. and Leonard, W.J. (1999) The Significance of Tetramerization in Promoter Recruitment by Stat5. Molecular and Cellular Biology, 19, 1910-1918.
[26] Lin, J.X., Li, P., Liu, D., Jin, H.T., He, J., Ata Ur Rasheed, M., Rochman, Y., Wang, L., Cui, K., Liu, C., et al. (2012) Critical Role of STAT5 Transcription Factor Tetramerization for Cytokine Responses and Normal Immune Function. Immunity, 36, 586-599.
http://dx.doi.org/10.1016/j.immuni.2012.02.017
[27] Ferbeyre, G. and Moriggl, R. (2011) The Role of Stat5 Transcription Factors as Tumor Suppressors or Oncogenes. Biochimica et Biophysica Acta, 1815, 104-114.
http://dx.doi.org/10.1016/j.bbcan.2010.10.004
[28] Moriggl, R., Sexl, V., Kenner, L., Duntsch, C., Stangl, K., Gingras, S., Hoffmeyer, A., Bauer, A., Piekorz, R., Wang, D., et al. (2005) Stat5 Tetramer Formation Is Associated with Leukemogenesis. Cancer Cell, 7, 87-99.
http://dx.doi.org/10.1016/j.ccr.2004.12.010
[29] Walford, H.H. and Doherty, T.A. (2013) STAT6 and Lung Inflammation. JAK-STAT, 2, Article ID: e25301.
http://dx.doi.org/10.4161/jkst.25301
[30] Lee, J.H., Kaminski, N., Dolganov, G., Grunig, G., Koth, L., Solomon, C., et al. (2001) Interleukin-13 Induces Dramatically Different Transcriptional Programs in Three Human Airway Cell Types. American Journal of Respiratory Cell and Molecular Biology, 25, 474-485.
http://dx.doi.org/10.1165/ajrcmb.25.4.4522
[31] Lawrence, T. and Natoli, G. (2011) Transcriptional Regulation of Macrophage Polarization: Enabling Diversity with Identity. Nature Reviews Immunology, 11, 750-761.
http://dx.doi.org/10.1038/nri3088
[32] Kaplan, M.H., Schindler, U., Smiley, S.T. and Grusby, M.J. (1996) Stat6 Is Required for Mediating Responses to IL-4 and for Development of Th2 Cells. Immunity, 4, 313-319.
http://dx.doi.org/10.1016/S1074-7613(00)80439-2
[33] Shimoda, K., van Deursen, J., Sangster, M.Y., Sarawar, S.R., Carson, R.T., Tripp, R.A., et al. (1996) Lack of IL-4-Induced Th2 Response and IgE Class Switching in Mice with Disrupted Stat6 Gene. Nature, 380, 630-633.
http://dx.doi.org/10.1038/380630a0
[34] Takeda, K., Tanaka, T., Shi, W., Matsumoto, M., Minami, M., Kashiwamura, S., et al. (1996) Essential Role of Stat6 in IL-4 Signalling. Nature, 380, 627-630.
http://dx.doi.org/10.1038/380627a0
[35] Maier, E., Duschl, A. and Horejs-Hoeck, J. (2012) STAT6-Dependent and -Independent Mechanisms in Th2 Polarization. European Journal of Immunology, 42, 2827-2833.
http://dx.doi.org/10.1002/eji.201242433
[36] Lu, T.C., Wang, Z.H., Feng, X., Chuang, P.Y., Fang, W., Shen, Y., Levy, D.E., Xiong, H., Chen, N. and He, J.C. (2009) Knockdown of Stat3 Activity in Vivo Prevents Diabetic Glomerulopathy. Kidney International, 76, 63-71.
http://dx.doi.org/10.1038/ki.2009.98
[37] Mashili, F., Chibalin, A.V., Krook, A. and Zierath, J.R. (2013) Constitutive STAT3 Phosphorylation Contributes to Skeletal Muscle Insulin Resistance in Type 2 Diabetes. Diabetes, 62, 457-465.
http://dx.doi.org/10.2337/db12-0337
[38] Kim, B.G., Yoo, J.Y., Kim, T.H., Shin, J.H., Langenheim, J.F., Ferguson, S.D., et al. (2015) Aberrant Activation of Signal Transducer and Activator of Transcription-3 (STAT3) Signaling in Endometriosis. Human Reproduction, 30, 1069-1078.
http://dx.doi.org/10.1093/humrep/dev050
[39] Matsui, F. and Meldrum, K.K. (2012) The Role of the Janus Kinase Family/Signal Transducer and Activator of Transcription Signaling Pathway in Fibrotic Renal Disease. Journal of Surgical Research, 178, 339-345.
http://dx.doi.org/10.1016/j.jss.2012.06.050
[40] Tang, J., Liu, C.Y., Lu, M.M., Zhang, J., Mei, W.J., Yang, W.J., et al. (2015) Fluorofenidone Protects against Renal Fibrosis by Inhibiting STAT3 Tyrosine Phosphorylation. Molecular and Cellular Biochemistry. (In Press)
http://dx.doi.org/10.1007/s11010-015-2456-5
[41] Robinson, M.B., Deshpande, D.A., Chou, J., Cui, W., Smith, S., Langefeld, C., Hastie, A.T., Bleecker, E.R. and Hawkins, G.A. (2015) IL6 Trans-Signaling Increases Expression of Airways Disease Genes in Airway Smooth Muscle. American Journal of Physiology—Lung Cellular and Molecular Physiology, 309, L129-L138.
[42] Hedrich, C.M., Rauen, T., Apostolidis, S.A., Grammatikos, A.P., Rodriguez, N.R., Ioannidis, C., et al. (2014) Stat3 Promotes IL-10 Expression in Lupus T Cells through Trans-Activation and Chromatin Remodeling. Proceedings of the National Academy of Sciences of the United States of America, 111, 13457-13462.
http://dx.doi.org/10.1073/pnas.1408023111
[43] Wang, L.G., Han, L.Y., Fallon, J., Tsao, A. and Chiao, J.W. (2013) Natura-Alpha, a Novel STAT3-Y705 Inhibitor in Treating Systemic Lupus Erythematosus in NZB/W Female Mice (P5157). The Journal of Immunology, 190, 68.6.
[44] Sugimoto, K. (2008) Role of STAT3 in Inflammatory Bowel Disease. World Journal of Gastroenterology, 14, 5110-5114.
http://dx.doi.org/10.3748/wjg.14.5110
[45] Nguyen, P.M., Putoczki, T.L. and Ernst, M. (2015) STAT3-Activating Cytokines: A Therapeutic Opportunity for Inflammatory Bowel Disease? Journal of Interferon & Cytokine Research, 35, 340-350.
http://dx.doi.org/10.1089/jir.2014.0225
[46] Mori, T., Miyamoto, T., Yoshida, H., Asakawa, M., Kawasumi, M., Kobayashi, T., et al. (2011) IL-1β and TNFα-Initiated IL-6-STAT3 Pathway Is Critical in Mediating Inflammatory Cytokines and RANKL Expression in Inflammatory Arthritis. International Immunology, 23, 701-712.
http://dx.doi.org/10.1093/intimm/dxr077
[47] Gao, W., McCormick, J., Connolly, M., Balogh, E., Veale, D.J. and Fearon, U. (2015) Hypoxia and STAT3 Signalling Interactions Regulate Pro-Inflammatory Pathways in Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 74, 1275-1283.
http://dx.doi.org/10.1136/annrheumdis-2013-204105
[48] Kong, E., Sucic, S., Monje, F.J., Savalli, G., Diao, W., Khan, D., et al. (2015) STAT3 Controls IL6-Dependent Regulation of Serotonin Transporter Function and Depression-Like Behavior. Scientific Reports, 5, 9009.
[49] Ben Haim, L., Ceyzériat, K., Carrillo-de Sauvage, M.A., Aubry, F., Auregan, G., Guillermier, M., et al. (2015) The JAK/STAT3 Pathway Is a Common Inducer of Astrocyte Reactivity in Alzheimer’s and Huntington’s Diseases. The Journal of Neuroscience, 35, 2817-2829.
http://dx.doi.org/10.1523/JNEUROSCI.3516-14.2015
[50] Zhang, H.F. and Lai, R. (2014) STAT3 in Cancer-Friend or Foe? Cancers (Basel), 6, 1408-1440.
http://dx.doi.org/10.3390/cancers6031408
[51] Vultur, A., Cao, J., Arulanandam, R., Turkson, J., Jove, R., Greer, P., et al. (2004) Cell-to-Cell Adhesion Modulates Stat3 Activity in Normal and Breast Carcinoma Cells. Oncogene, 23, 2600-2616.
http://dx.doi.org/10.1038/sj.onc.1207378
[52] Steinman, R.A., Wentzel, A., Lu, Y., Stehle, C. and Grandis, J.R. (2003) Activation of Stat3 by Cell Confluence Reveals Negative Regulation of Stat3 by Cdk2. Oncogene, 22, 3608-3615.
http://dx.doi.org/10.1038/sj.onc.1206523
[53] Gkouveris, I., Nikitakis, N., Karanikou, M., Rassidakis, G. and Sklavounou, A. (2014) Erk1/2 Activation and Modulation of STAT3 Signaling in Oral Cancer. Oncology Reports, 32, 2175-2182.
http://dx.doi.org/10.3892/or.2014.3440
[54] Yan, S., Li, Z. and Thiele, C.J. (2013) Inhibition of STAT3 with Orally Active JAK Inhibitor AZD1480 Decreases Tumor Growth in Neuroblastoma and Pediatric Sarcomas in Vitro and in Vivo. Oncotarget, 4, 433-445.
[55] Ivanov, V.N., Bhoumik, A., Krasilnikov, M., Raz, R., Owen-Schaub, L.B., Levy, D., Horvath, C.M. and Ronai, Z. (2001) Cooperation between STAT3 and c-Jun Suppresses Fas Transcription. Molecular Cell, 7, 517-528.
http://dx.doi.org/10.1016/S1097-2765(01)00199-X
[56] Barre, B., Avril, S. and Coqueret, O. (2003) Opposite Regulation of Myc and p21waf1 Transcription by STAT3 Proteins. The Journal of Biological Chemistry, 278, 2990-2996.
http://dx.doi.org/10.1074/jbc.M210422200
[57] Bournazou, E. and Bromberg, J. (2013) Targeting the Tumor Microenvironment: JAK-STAT3 Signaling. JAK-STAT, 2, Article ID: e23828.
http://dx.doi.org/10.4161/jkst.23828
[58] Garcia, R., Yu, C.L., Hudnall, A., Catlett, R., Nelson, K.L., Smithgall, T., et al. (1997) Constitutive Activation of Stat3 in Fibroblasts Transformed by Diverse Oncoproteins and in Breast Carcinoma Cells. Cell Growth & Differentiation, 8, 1267-1276.
[59] Gao, B., Shen, X., Kunos, G., Meng, Q.H., Goldberg, I.D., Rosen, E.M. and Fan, S.J. (2001) Constitutive Activation of JAK-STAT3 Signaling by BRCA1 in Human Prostate Cancer Cells. FEBS Letters, 488, 179-184.
http://dx.doi.org/10.1016/S0014-5793(00)02430-3
[60] Nikitakis, N.G., Siavash, H. and Sauk, J.J. (2004) Targeting the STAT Pathway in Head and Neck Cancer: Recent Advances and Future Prospects. Current Cancer Drug Targets, 4, 637-651.
http://dx.doi.org/10.2174/1568009043332736
[61] Kusaba, T., Nakayama, T., Yamazumi, K., Yakata, Y., Yoshizaki, A., Inoue, K., Nagayasu, T. and Sekine, I. (2006) Activation of STAT3 Is a Marker of Poor Prognosis in Human Colorectal Cancer. Oncology Reports, 15, 1445-1451.
http://dx.doi.org/10.3892/or.15.6.1445
[62] Hirano, T., Ishihara, K. and Hibi, M. (2000) Roles of STAT3 in Mediating the Cell Growth, Differentiation and Survival Signals Relayed through the IL-6 Family of Cytokine Receptors. Oncogene, 19, 2548-2556.
http://dx.doi.org/10.1038/sj.onc.1203551
[63] Rawat, R., Rainey, G.J., Thompson, C.D., Frazier-Jessen, M.R., Brown, R.T. and Nordan, R.P. (2000) Constitutive Activation of STAT3 Is Associated with the Acquisition of an Interleukin 6-Independent Phenotype by Murine Plasmacytomas and Hybridomas. Blood, 96, 3514-3521.
[64] Catlett-Falcone, R., Landowski, T.H., Oshiro, M.M., Turkson, J., Levitzki, A., Savino, R., et al. (1999) Constitutive Activation of Stat3 Signaling Confers Resistance to Apoptosis in Human U266 Myeloma Cells. Immunity, 10, 105-115.
http://dx.doi.org/10.1016/S1074-7613(00)80011-4
[65] Skinnider, B.F., Elia, A.J., Gascoyne, R.D., Patterson, B., Trumper, L., Kapp, U. and Mak, T.W. (2002) Signal Transducer and Activator of Transcription 6 Is Frequently Activated in Hodgkin and Reed-Sternberg Cells of Hodgkin Lymphoma. Blood, 99, 618-626.
http://dx.doi.org/10.1182/blood.V99.2.618
[66] Lowenberg, B. and Touw, I.P. (1993) Hematopoietic Growth Factors and Their Receptors in Acute Leukemia. Blood, 81, 281-292.
[67] Redell, M.S., Ruiz, M.J., Alonzo, T.A., Gerbing, R.B. and Tweardy, D.J. (2011) Stat3 Signaling in Acute Myeloid Leukemia: Ligand-Dependent and -Independent Activation and Induction of Apoptosis by a Novel Small-Molecule Stat3 Inhibitor. Blood, 117, 5701-5709.
http://dx.doi.org/10.1182/blood-2010-04-280123
[68] Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P.H., Violette, S.M. and Bromberg, J. (2007) Constitutively Activated Stat3 Induces Tumorigenesis and Enhances Cell Motility of Prostate Epithelial Cells through Integrin Beta 6. Molecular and Cellular Biology, 27, 4444-4453.
http://dx.doi.org/10.1128/MCB.02404-06
[69] Bromberg, J.F., Wrzeszczynska, M.H., Devgan, G., Zhao, Y., Pestell, R.G., Albanese, C. and Darnell Jr., J.E. (1999) STAT3 as an Oncogene. Cell, 98, 295-303.
http://dx.doi.org/10.1016/S0092-8674(00)81959-5
[70] Turkson, J., Bowman, T., Garcia, R., Caldenhoven, E., de Groot, R.P. and Jove, R. (1998) Stat3 Activation by Src Induces Specific Gene Regulation and Is Required for Cell Transformation. Molecular and Cellular Biology, 18, 2545-2552.
[71] Gao, S.P., Mark, K.G., Leslie, K., Pao, W., Motoi, N., Gerald, W.L., Travis, W.D., Bornmann, W., Veach, D., Clarkson, B., et al. (2007) Mutations in the EGFR Kinase Domain Mediate STAT3 Activation via IL-6 Production in Human Lung Adenocarcinomas. Journal of Clinical Investigation, 117, 3846-3856.
http://dx.doi.org/10.1172/JCI31871
[72] Inda, M.M., Bonavia, R., Mukasa, A., Narita, Y., Sah, D.W., Vandenberg, S., Brennan, C., Johns, T.G., Bachoo, R., Hadwiger, P., et al. (2010) Tumor Heterogeneity Is an Active Process Maintained by a Mutant EGFR-Induced Cytokine Circuit in Glioblastoma. Genes & Development, 24, 1731-1745.
http://dx.doi.org/10.1101/gad.1890510
[73] Yu, H., Pardoll, D. and Jove, R. (2009) STATs in Cancer Inflammation and Immunity: A Leading Role for STAT3. Nature Reviews Cancer, 9, 798-809.
http://dx.doi.org/10.1038/nrc2734
[74] Iliopoulos, D., Jaeger, S.A., Hirsch, H.A., Bulyk, M.L. and Struhl, K. (2010) STAT3 Activation of miR-21 and miR-181b-1 via PTEN and CYLD Are Part of the Epigenetic Switch Linking Inflammation to Cancer. Molecular Cell, 39, 493-506.
http://dx.doi.org/10.1016/j.molcel.2010.07.023
[75] Lee, H., Deng, J., Kujawski, M., Yang, C., Liu, Y., Herrmann, A., Kortylewski, M., Horne, D., Somlo, G., Forman, S., et al. (2010) STAT3-Induced S1PR1 Expression Is Crucial for Persistent STAT3 Activation in Tumors. Nature Medicine, 16, 1421-1428.
http://dx.doi.org/10.1038/nm.2250
[76] Ohgami, R.S., Ma, L., Merker, J.D., Martinez, B., Zehnder, J.L. and Arber, D.A. (2013) STAT3 Mutations Are Frequent in CD30+ T-Cell Lymphomas and T-Cell Large Granular Lymphocytic Leukemia. Leukemia, 27, 2244-2247.
http://dx.doi.org/10.1038/leu.2013.104
[77] Pilati, C., Amessou, M., Bihl, M.P., Balabaud, C., Nhieu, J.T., Paradis, V., Nault, J.C., Izard, T., Bioulac-Sage, P., Couchy, G., et al. (2011) Somatic Mutations Activating STAT3 in Human Inflammatory Hepatocellular Adenomas. Journal of Experimental Medicine, 208, 1359-1366.
http://dx.doi.org/10.1084/jem.20110283
[78] Fasan, A., Kern, W., Grossmann, V., Haferlach, C., Haferlach, T. and Schnittger, S. (2013) STAT3 Mutations Are Highly Specific for Large Granular Lymphocytic Leukemia. Leukemia, 27, 1598-1600.
http://dx.doi.org/10.1038/leu.2012.350
[79] Koskela, H.L., Eldfors, S., Ellonen, P., van Adrichem, A.J., Kuusanmaki, H., Andersson, E.I., Lagstrom, S., Clemente, M.J., Olson, T., Jalkanen, S.E., et al. (2012) Somatic STAT3 Mutations in Large Granular Lymphocytic Leukemia. The New England Journal of Medicine, 366, 1905-1913.
http://dx.doi.org/10.1056/NEJMoa1114885
[80] Jerez, A., Clemente, M.J., Makishima, H., Koskela, H., Leblanc, F., Peng Ng, K., Olson, T., Przychodzen, B., Afable, M., Gomez-Segui, I., et al. (2012) STAT3 Mutations Unify the Pathogenesis of Chronic Lymphoproliferative Disorders of NK Cells and T-Cell Large Granular Lymphocyte Leukemia. Blood, 120, 3048-3057.
http://dx.doi.org/10.1182/blood-2012-06-435297
[81] Julien, S.G., Dube, N., Hardy, S. and Tremblay, M.L. (2011) Inside the Human Cancer Tyrosine Phosphatome. Nature Reviews Cancer, 11, 35-49.
http://dx.doi.org/10.1038/nrc2980
[82] Ostman, A., Hellberg, C. and Bohmer, F.D. (2006) Protein-Tyrosine Phosphatases and Cancer. Nature Reviews Cancer, 6, 307-320.
http://dx.doi.org/10.1038/nrc1837
[83] Yoshimura, A., Naka, T. and Kubo, M. (2007) SOCS Proteins, Cytokine Signalling and Immune Regulation. Nature Reviews Cancer, 7, 454-465.
http://dx.doi.org/10.1038/nri2093
[84] Yoshikawa, H., Matsubara, K., Qian, G.S., Jackson, P., Groopman, J.D., Manning, J.E., et al. (2001) SOCS-1, a Negative Regulator of the JAK/STAT Pathway, Is Silenced by Methylation in Human Hepatocellular Carcinoma and Shows Growth-Suppression Activity. Nature Genetics, 28, 29-35.
http://dx.doi.org/10.1038/ng0501-29
[85] To, K.F., Chan, M.W., Leung, W.K., Ng, E.K., Yu, J., Bai, A.H., Lo, A.W., Chu, S.H., Tong, J.H., Lo, K.W., et al. (2004) Constitutional Activation of IL-6-Mediated JAK/STAT Pathway through Hypermethylation of SOCS-1 in Human Gastric Cancer Cell Line. British Journal of Cancer, 91, 1335-1341.
http://dx.doi.org/10.1038/sj.bjc.6602133
[86] Chim, C.S., Fung, T.K., Cheung, W.C., Liang, R. and Kwong, Y.L. (2004) SOCS1 and SHP1 Hypermethylation in Multiple Myeloma: Implications for Epigenetic Activation of the JAK/STAT Pathway. Blood, 103, 4630-4635.
http://dx.doi.org/10.1182/blood-2003-06-2007
[87] Galm, O., Yoshikawa, H., Esteller, M., Osieka, R. and Herman, J.G. (2003) SOCS-1, a Negative Regulator of Cytokine Signaling, Is Frequently Silenced by Methylation in Multiple Myeloma. Blood, 101, 2784-2788.
http://dx.doi.org/10.1182/blood-2002-06-1735
[88] Zhang, Q., Wang, H.Y., Marzec, M., Raghunath, P.N., Nagasawa, T. and Wasik, M.A. (2005) STAT3- and DNA Methyltransferase 1-Mediated Epigenetic Silencing of SHP-1 Tyrosine Phosphatase Tumor Suppressor Gene in Malignant T Lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 102, 6948-6953.
http://dx.doi.org/10.1073/pnas.0501959102
[89] Oka, T., Ouchida, M., Koyama, M., Ogama, Y., Takada, S., Nakatani, Y., Tanaka, T., Yoshino, T., Hayashi, K., Ohara, N., et al. (2002) Gene Silencing of the Tyrosine Phosphatase SHP1 Gene by Aberrant Methylation in Leukemias/ Lymphomas. Cancer Research, 62, 6390-6394.
[90] Brantley, E.C., Nabors, L.B., Gillespie, G.Y., Choi, Y.H., Palmer, C.A., Harrison, K., Roarty, K. and Benveniste, E.N. (2008) Loss of Protein Inhibitors of Activated STAT-3 Expression in Glioblastoma Multiforme Tumors: Implications for STAT-3 Activation and Gene Expression. Clinical Cancer Research, 14, 4694-4704.
http://dx.doi.org/10.1158/1078-0432.ccr-08-0618
[91] de la Iglesia, N., Konopka, G., Puram, S.V., Chan, J.A., Bachoo, R.M., You, M.J., et al. (2008) Identification of a PTEN-Regulated STAT3 Brain Tumor Suppressor Pathway. Genes & Development, 22, 449-462.
http://dx.doi.org/10.1101/gad.1606508
[92] Musteanu, M., Blaas, L., Mair, M., Schlederer, M., Bilban, M., Tauber, S., et al. (2010) Stat3 Is a Negative Regulator of Intestinal Tumor Progression in Apc(Min) Mice. Gastroenterology, 138, 1003-1011.
http://dx.doi.org/10.1053/j.gastro.2009.11.049
[93] Lee, J., Kim, J.C., Lee, S.E., Quinley, C., Kim, H., Herdman, S., Corr, M. and Raz, E. (2012) Signal Transducer and Activator of Transcription 3 (STAT3) Protein Suppresses Adenoma-to-Carcinoma Transition in Apcmin/+ Mice via Regulation of Snail-1 (SNAI) Protein Stability. The Journal of Biological Chemistry, 287, 18182-18189.
http://dx.doi.org/10.1074/jbc.M111.328831
[94] Wang, H., Lafdil, F., Wang, L., Park, O., Yin, S., Niu, J.Y., et al. (2011) Hepatoprotective versus Oncogenic Functions of STAT3 in Liver Tumorigenesis. American Journal of Pathology, 179, 714-724.
http://dx.doi.org/10.1016/j.ajpath.2011.05.005
[95] Schneller, D., Machat, G., Sousek, A., Proell, V., van Zijl, F., Zulehner, G., Huber, H., et al. (2011) p19(ARF)/ p14(ARF) Controls Oncogenic Functions of Signal Transducer and Activator of Transcription 3 in Hepatocellular Carcinoma. Hepatology, 54, 164-172.
http://dx.doi.org/10.1002/hep.24329
[96] Pectasides, E., Egloff, A.M., Sasaki, C., Kountourakis, P., Burtness, B., Fountzilas, G., et al. (2010) Nuclear Localization of Signal Transducer and Activator of Transcription 3 in Head and Neck Squamous Cell Carcinoma Is Associated with a Better Prognosis. Clinical Cancer Research, 16, 2427-2434.
http://dx.doi.org/10.1158/1078-0432.CCR-09-2658
[97] Ettl, T., Stiegler, C., Zeitler, K., Agaimy, A., Zenk, J., Reichert, T.E., et al. (2012) EGFR, HER2, Survivin, and Loss of pSTAT3 Characterize High-Grade Malignancy in Salivary Gland Cancer with Impact on Prognosis. Human Pathology, 43, 921-931.
http://dx.doi.org/10.1016/j.humpath.2011.08.006
[98] Sato, T., Neilson, L.M., Peck, A.R., Liu, C., Tran, T.H., Witkiewicz, A., et al. (2011) Signal Transducer and Activator of Transcription-3 and Breast Cancer Prognosis. American Journal of Cancer Research, 1, 347-355.
[99] Liu, Q., Li, G., Li, R., Shen, J., He, Q., Deng, L., Zhang, C. and Zhang, J. (2010) IL-6 Promotion of Glioblastoma Cell Invasion and Angiogenesis in U251 and T98G Cell Lines. The Journal of Neuro-Oncology, 100, 165-176.
http://dx.doi.org/10.1007/s11060-010-0158-0
[100] Varghese, J.N., Moritz, R.L., Lou, M.Z., Van Donkelaar, A., Ji, H., Ivancic, N., Branson, K.M., Hall, N.E. and Simpson, R.J. (2002) Structure of the Extracellular Domains of the Human Interleukin-6 Receptor Alpha-Chain. Proceedings of the National Academy of Sciences of the United States of America, 99, 15959-15964.
http://dx.doi.org/10.1073/pnas.232432399
[101] Rose-John, S. (2001) Coordination of Interleukin-6 Biology by Membrane Bound and Soluble Receptors. Advances in Experimental Medicine and Biology, 495, 145-151.
http://dx.doi.org/10.1007/978-1-4615-0685-0_19
[102] Culiq, Z. (2011) Cytokine Disbalance in Common Human Cancers. Biochimica et Biophysica Acta, 1813, 308-314.
http://dx.doi.org/10.1016/j.bbamcr.2010.12.010
[103] Haan, C., Kreis, S., Margue, C. and Behrmann, I. (2006) Jaks and Cytokine Receptors—An Intimate Relationship. Biochemical Pharmacology, 72, 1538-1546.
http://dx.doi.org/10.1016/j.bcp.2006.04.013
[104] Wanq, S.W. and Sun, Y.M. (2014) The IL-6/JAK/STAT3 Pathway: Potential Therapeutic Strategies in Treating Colorectal Cancer (Review). International Journal of Oncology, 44, 1032-1040.
[105] Asangani, I.A., Dommeti, V.L., Wang, X., Malik, R., Cieslik, M., Yang, R., et al. (2014) Therapeutic Targeting of BET Bromodomain Proteins in Castration-Resistant Prostate Cancer. Nature, 510, 278-282.
http://dx.doi.org/10.1038/nature13229
[106] Lin, T.H., Izumi, K., Lee, S.O., Lin, W.J., Yeh, S. and Chang, C. (2013) Anti-Androgen Receptor ASC-J9 versus Anti-Androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) Leads to Opposite Effects on Prostate Cancer Metastasis via Differential Modulation of Macrophage Infiltration and STAT3-CCL2 Signaling. Cell Death & Disease, 4, e764.
http://dx.doi.org/10.1038/cddis.2013.270
[107] Lin, T.H., Lee, S.O., Niu, Y., Xu, D., Liang, L., Li, L., et al. (2013) Differential Androgen Deprivation Therapies with Anti-Androgens Casodex/Bicalutamide or MDV3100/Enzalutamide versus Anti-Androgen Receptor ASC-J9(R) Lead to Promotion versus Suppression of Prostate Cancer Metastasis. The Journal of Biological Chemistry, 288, 19359-19369.
http://dx.doi.org/10.1074/jbc.M113.477216
[108] Lisa Cheng, Y.S., Jordan, L., Gorugantula, L.M., Schneiderman, E., Chen, H.S. and Rees, T. (2014) Salivary Interleukin-6 and -8 in Patients with Oral Cancer and Patients with Chronic Oral Inflammatory Diseases. Journal of Periodontology, 85, 956-965.
http://dx.doi.org/10.1902/jop.2013.130320
[109] Chang, K.T., Tsai, C.M., Chiou, Y.C., Chiu, C.H., Jeng, K.S. and Huang, C.Y. (2005) IL-6 Induces Neuroendocrine Dedifferentiation and Cell Proliferation in Non-Small Cell Lung Cancer Cells. American Journal of Physiology—Lung Cellular and Molecular Physiology, 289, L446-L453.
http://dx.doi.org/10.1152/ajplung.00089.2005
[110] Wan, S., Zhao, E., Kryczek, I., Vatan, L., Sadovskaya, A., Ludema, G., et al. (2014) Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology, 147, 1393-1404.
http://dx.doi.org/10.1053/j.gastro.2014.08.039
[111] Patel, S.A., Bhambra, U., Charalambous, M.P., David, R.M., Edwards, R.J., Lightfoot, T., et al. (2014) Interleukin-6 Mediated Upregulation of CYP1B1 and CYP2E1 in Colorectal Cancer Involves DNA Methylation, miR27b and STAT3. British Journal of Cancer, 111, 2287-2296.
http://dx.doi.org/10.1038/bjc.2014.540
[112] Yang, L., Han, S. and Sun, Y. (2014) An IL6-STAT3 Loop Mediates Resistance to PI3K Inhibitors by Inducing Epithelial-Mesenchymal Transition and Cancer Stem Cell Expansion in Human Breast Cancer Cells. Biochemical and Biophysical Research Communications, 453, 582-587.
http://dx.doi.org/10.1016/j.bbrc.2014.09.129
[113] Zheng, T., Hong, X., Wang, J., Pei, T., Liang, Y., Yin, D., et al. (2014) Gankyrin Promotes Tumor Growth and Metastasis through Activation of IL-6/STAT3 Signaling in Human Cholangiocarcinoma. Hepatology, 59, 935-946.
http://dx.doi.org/10.1002/hep.26705
[114] Liu, C., Lou, W., Armstrong, C., Zhu, Y., Evans, C.P. and Gao, A.C. (2015) Niclosamide Suppresses Cell Migration and Invasion in Enzalutamide Resistant Prostate Cancer Cells via Stat3-AR Axis Inhibition. The Prostate. (Electronic Publish ahead of Print)
http://dx.doi.org/10.1002/pros.23015
[115] Waitkus, M.S., Chandrasekharan, U.M., Willard, B., Tee, T.L., Hsieh, J.K., Przybycin, C.G., et al. (2014) Signal Integration and Gene Induction by a Functionally Distinct STAT3 Phosphoform. Molecular and Cellular Biology, 34, 1800-1811.
http://dx.doi.org/10.1128/MCB.00034-14
[116] Zhang, Q., Raje, V., Yakovlev, V.A., Yacoub, A., Szczepanek, K., Meier, J., et al. (2013) Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727. The Journal of Biological Chemistry, 288, 31280-31288.
http://dx.doi.org/10.1074/jbc.M113.505057
[117] Reich, N.C. and Liu, L. (2006) Tracking STAT Nuclear Traffic. Nature Reviews Immunology, 6, 602-612.
http://dx.doi.org/10.1038/nri1885
[118] Wen, Z. and Darnell Jr., J.E. (1997) Mapping of Stat3 Serine Phosphorylation to a Single Residue (727) and Evidence That Serine Phosphorylation Has No Influence on DNA Binding of Stat1 and Stat3. Nucleic Acids Research, 25, 2062-2067.
http://dx.doi.org/10.1093/nar/25.11.2062
[119] Wen, Z., Zhong, Z. and Darnell Jr., J.E. (1995) Maximal Activation of Transcription by Stat1 and Stat3 Requires Both Tyrosine and Serine Phosphorylation. Cell, 82, 241-250.
http://dx.doi.org/10.1016/0092-8674(95)90311-9
[120] Hazan-Halevy, I., Harris, D., Liu, Z., Liu, J., Li, P., Chen, X., Shanker, S., Ferrajoli, A., Keating, M.J. and Estrov, Z. (2010) STAT3 Is Constitutively Phosphorylated on Serine 727 Residues, Binds DNA, and Activates Transcription in CLL Cells. Blood, 115, 2852-2863.
http://dx.doi.org/10.1182/blood-2009-10-230060
[121] Lim, C.P. and Cao, X. (1999) Serine Phosphorylation and Negative Regulation of Stat3 by JNK. The Journal of Biological Chemistry, 274, 31055-31061.
http://dx.doi.org/10.1074/jbc.274.43.31055
[122] Chung, J., Uchida, E., Grammer, T.C. and Blenis, J. (1997) STAT3 Serine Phosphorylation by ERK-Dependent and -Independent Pathways Negatively Modulates Its Tyrosine Phosphorylation. Molecular and Cellular Biology, 17, 6508-6516.
[123] O’Shea, J.J., Gadina, M. and Schreiber, R.D. (2002) Cytokine Signaling in 2002: New Surprises in the Jak/Stat Pathway. Cell, 109, S121-S131.
http://dx.doi.org/10.1016/s0092-8674(02)00701-8
[124] Decker, T. and Kovarik, P. (2000) Serine Phosphorylation of STATs. Oncogene, 19, 2628-2637.
http://dx.doi.org/10.1038/sj.onc.1203481
[125] Venkatasubbarao, K., Choudary, A. and Freeman, J.W. (2005) Farnesyl Transferase Inhibitor (R115777)-Induced Inhibition of STAT3(Tyr705) Phosphorylation in Human Pancreatic Cancer Cell Lines Require Extracellular Signal-Regulated Kinases. Cancer Research, 65, 2861-2871.
http://dx.doi.org/10.1158/0008-5472.CAN-04-2396
[126] Wakahara, R., Kunimoto, H., Tanino, K., Kojima, H., Inoue, A., Shintaku, H. and Nakajima, K. (2012) Phospho-Ser727 of STAT3 Regulates STAT3 Activity by Enhancing Dephosphorylation of Phospho-Tyr705 Largely through TC45. Genes Cells, 17, 132-145.
http://dx.doi.org/10.1111/j.1365-2443.2011.01575.x
[127] Aggarwal, B.B., Kunnumakkara, A.B., Harikumar, K.B., Gupta, S.R., Tharakan, S.T., Koca, C., et al. (2009) Signal Transducer and Activator of Transcription-3, Inflammation, and Cancer: How Intimate Is the Relationship? Annals of the New York Academy of Sciences, 1171, 59-76.
http://dx.doi.org/10.1111/j.1749-6632.2009.04911.x
[128] Gough, D., Koetz, L. and Levy, D. (2013) The MEK-ERK Pathway Is Necessary for Serine Phosphorylation of Mitochondrial STAT3 and Ras-Mediated Transformation. PLoS ONE, 8, e83395.
http://dx.doi.org/10.1371/journal.pone.0083395
[129] Chapman, R.S., Lourenco, P.C., Tonner, E., Flint, D.J., Selbert, S., Takeda, K., Akira, S., Clarke, A.R. and Watson, C.J. (1999) Suppression of Epithelial Apoptosis and Delayed Mammary Gland Involution in Mice with a Conditional Knockout of Stat3. Genes & Development, 13, 2604-2616.
http://dx.doi.org/10.1101/gad.13.19.2604
[130] Sano, S., Takahama, Y., Sugawara, T., Kosaka, H., Itami, S., Yoshikawa, K., Miyazaki, J., van Ewijk, W. and Takeda, J. (2001) Stat3 in Thymic Epithelial Cells Is Essential for Postnatal Maintenance of Thymic Architecture and Thymocyte Survival. Immunity, 15, 261-273.
http://dx.doi.org/10.1016/S1074-7613(01)00180-7
[131] Takeda, K., Kaisho, T., Yoshida, N., Takeda, J., Kishimoto, T. and Akira, S. (1998) Stat3 Activation Is Responsible for IL-6-Dependent T Cell Proliferation through Preventing Apoptosis: Generation and Characterization of T Cell-Specific Stat3-Deficient Mice. The Journal of Immunology, 161, 4652-4660.
[132] Lee, C., Dhillon, J., Wang, M.Y., Gao, Y., Hu, K., Park, E., et al. (2008) Targeting YB-1 in HER-2 Overexpressing Breast Cancer Cells Induces Apoptosis via the mTOR/STAT3 Pathway and Suppresses Tumor Growth in Mice. Cancer Research, 68, 8661-8666.
http://dx.doi.org/10.1158/0008-5472.CAN-08-1082
[133] Miyakoshi, M., Yamamoto, M., Tanaka, H. and Ogawa, K. (2014) Serine 727 Phosphorylation of STAT3: An Early Change in Mouse Hepatocarcinogenesis Induced by Neonatal Treatment with Diethylnitrosamine. Molecular Carcinogenesis, 53, 67-76.
http://dx.doi.org/10.1002/mc.21949
[134] Sakaguchi, M., Oka, M., Iwasaki, T., Fukami, Y. and Nishigori, C. (2012) Role and Regulation of STAT3 Phosphorylation at Ser727 in Melanocytes and Melanoma Cells. Journal of Investigative Dermatology, 132, 1877-1885.
http://dx.doi.org/10.1038/jid.2012.45
[135] Thakur, R., Trivedi, R., Rastogi, N., Singh, M. and Mishra, D.P. (2015) Inhibition of STAT3, FAK and Src Mediated Signaling Reduces Cancer Stem Cell Load, Tumorigenic Potential and Metastasis in Breast Cancer. Scientific Reports, 5, Article ID: 10194.
http://dx.doi.org/10.1038/srep10194
[136] Blaylock, R.L. (2015) Cancer Microenvironment, Inflammation and Cancer Stem Cells: A Hypothesis for a Paradigm Change and New Targets in Cancer Control. Surgical Neurology International, 6, 92.
http://dx.doi.org/10.4103/2152-7806.157890
[137] Liou, G.Y. and Storz, P. (2010) Reactive Oxygen Species in Cancer. Free Radical Research, 44, 479-496.
http://dx.doi.org/10.3109/10715761003667554
[138] Horinaga, M., Okita, H., Nakashima, J., Kanao, K., Sakamoto, M. and Murai, M. (2005) Clinical and Pathologic Significance of Activation of Signal Transducer and Activator of Transcription 3 in Prostate Cancer. Urology, 66, 671-675.
http://dx.doi.org/10.1016/j.urology.2005.03.066
[139] Liu, X., He, Z., Li, C., Huang, G., Ding, C. and Liu, H. (2012) Correlation Analysis of JAK-STAT Pathway Components on Prognosis of Patients with Prostate Cancer. Pathology Oncology Research: POR, 18, 17-23.
[140] Han, Z., Wang, X., Ma, L., Chen, L., Xiao, M., Huang, L., et al. (2014) Inhibition of STAT3 Signaling Targets Both Tumor-Initiating and Differentiated Cell Populations in Prostate Cancer. Oncotarget, 5, 8416-8428.
[141] Kroon, P., Berry, P.A., Stower, M.J., Rodrigues, G., Mann, V.M., Simms, M., et al. (2013) JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-Like Cells. Cancer Research, 73, 5288-5298.
http://dx.doi.org/10.1158/0008-5472.CAN-13-0874
[142] Qu, Y., Oyan, A.M., Liu, R., Hua, Y., Zhang, J., Hovland, R., et al. (2013) Generation of Prostate Tumor-Initiating Cells Is Associated with Elevation of Reactive Oxygen Species and IL-6/STAT3 Signaling. Cancer Research, 73, 7090-7100.
http://dx.doi.org/10.1158/0008-5472.CAN-13-1560
[143] Rybak, A.P., Bristow, R.G. and Kapoor, A. (2015) Prostate Cancer Stem Cells: Deciphering the Origins and Pathways Involved in Prostate Tumorigenesis and Aggression. Oncotarget, 6, 1900-1919.
[144] Hossain, A., Gumin, J., Gao, F., Figueroa, J., Shinojima, N., Takezaki, T., et al. (2015) Mesenchymal Stem Cells Isolated from Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells through the IL-6/ gp130/STAT3 Pathway. Stem Cells, 33, 2400-2415.
[145] van der Zee, M., Sacchetti, A., Cansoy, M., Joosten, R., Teeuwssen, M., Heijmans-Antonissen, C., et al. (2015). IL6/JAK1/STAT3 Signaling Blockade in Endometrial Cancer Affects the ALDHHICD126+-Like Component and Reduces Tumor Burden. Cancer Research, Epub ahead of Print.
http://dx.doi.org/10.1158/0008-5472.can-14-2498
[146] Islam, M., Sharma, S. and Teknos, T. (2014) RhoC Regulates Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma by Overexpressing IL-6 and Phosphorylation of STAT3. PLoS ONE, 9, e88527.
http://dx.doi.org/10.1371/journal.pone.0088527
[147] Won, C., Kim, B.H., Hee, Y.E., Choi, K.J., Kim, E.K., et al. (2015) STAT3-Mediated CD133 Upregulation Contributes to Promotion of Hepatocellular Carcinoma. Hepatology, Epub ahead of Print.
http://dx.doi.org/10.1002/hep.27968
[148] Chen, J.J., Cai, N., Chen, G.Z., Jia, C.C., Qiu, D.B., Du, C., et al. (2015) The Neuroleptic Drug Pimozide Inhibits Stem-Like Cell Maintenance and Tumorigenicity in Hepatocellular Carcinoma. Oncotarget, Epub ahead of Print.
[149] Zhao, D., Pan, C., Sun, J., Gilbert, C., Drews-Elger, K., Azzam, D.J., et al. (2015) VEGF Drives Cancer-Initiating Stem Cells through VEGFR-2/Stat3 Signaling to Upregulate Myc and Sox2. Oncogene, 34, 3107-3119.
http://dx.doi.org/10.1038/onc.2014.257

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.