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Abstract 

In recent years, signal transducers and activators of transcription (STAT) proteins have been 
recognized as cytoplasmic transcription factors that mediate extracellular signaling to the nucleus 
controlling fundamental functions, such as cell proliferation, apoptosis, differentiation, immune 
responses and angiogenesis. Among them, STAT3 is a major player, aberrant activation of which is 
involved in several diseases, including cancer. Among other upstream regulators, IL-6/Jak signal-
ing can activate STAT3 and its role appears to be critical in various types of cancer. Although 
STAT3 has been traditionally recognized as amoncogene, more recently the dual role of STAT3 in 
cancer, either tumor inductive or suppressive, has been appreciated. The importance and diffe-
rential effect of STAT3 on tyrosine or serine residues are also a matter of continuing debate. Inte-
restingly, recent findings suggesting that STAT3 plays an important role in cancer stem cell regu-
lation have gained significant attention. This review summarizes current literature focusing on 
the significance of STAT3 in several diseases as well as in cancer. Understanding the complexity of 
STAT3 function has the potential to elucidate important molecular aspects of cancer with signifi-
cant therapeutic implications. 
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1. Introduction 
STAT proteins (signal transducers and activators of transcription) constitute a large family of transcription factors 
with a dual role as signal transduction and transcription activators. STATs were first described in 1994 [1] as 
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members of interferon (IFN) signaling complex [2] [3]. They are found in the cytoplasm in a latent form and 
become active in response to stimulation by cytokines and growth factors, hormones and peptides. STAT3 is a 
significant member of STAT family and has been largely studied, in recent years. This review attempts to eluci-
date the role of STAT3 molecule signaling in occurrence of diseases including cancer.  

2. STATs: The Members of the Family 
STAT family consists of 7 members in mammals including STAT-1, STAT-2, STAT-3, STAT-4, STAT-5 a and 
b, and STAT-6 [4]. STAT proteins comprise 750 to 850 amino acids and some authors classify them according 
to their functional role into two groups [5] [6]: STAT2, STAT4, and STAT6 represent the first group which is 
involved in T-cell development and IFN-γ signaling and become activated through several cytokines. The 
second one consists of STAT1, STAT3, and STAT5, being activated in different tissues through a series of dif-
ferent ligands and considered to be involved in various processes, such as IFN-γ signaling, development of 
mammary glands, growth hormones response and embryogenesis. This latter group of STATs is supposed to 
play a crucial role in cancer development by controlling fundamental cellular functions including cell cycle and 
apoptosis [6].  

2.1. STAT1 
Darnell et al. first proposed that the initial physical role of STAT1 is to mediate the antiviral and immune effects of 
IFNs. Both STAT1 and STAT2 directly mediate IFN-α and IFN-γ biological effects and play a significant role in 
the mechanisms that control cell growth and apoptosis [1]. The involvement of STAT1 in cancer is controversial; 
for example, it is suggested that STAT1 activity enhances breast tumor growth and immune suppression [7], 
while other evidence indicates the loss of its expression in different types of malignant cells, such as breast cancer, 
head and neck cancer [8], melanoma, leukemia, and lymphoma [9]-[12].  

2.2. STAT2 
STAT2 is supposed to be vital in innate immunity and specific viruses are found to target STAT2 to surpass the 
IFN antiviral response. STAT2 plays also a crucial role in promoting IFN-induced apoptosis, while its transcrip-
tional activity is controversial, potentially acting both as a repressor and activator. Moreover, even though 
STAT2 forms heterodimers with STAT1, recent data proposed an alternative STAT2 signaling pathway, inde-
pendent of STAT1 [13].  

2.3. STAT3 
STAT3 activation in normal conditions drives a well organized gene regulation schedule. After STAT3 is ex-
posed to cytokine stimulation, the molecule can reach a maximum of phosphorylation within the first 15 - 60 
minutes, but STAT3 activation gradually decreases in the following hours [6]. STAT3 activation is mediated by 
the JAK family of tyrosine-kinases, most notably by JAK1 [14]. STAT3 can be activated independent of JAKs 
by other non-receptor tyrosine kinases, mostly by c-Src kinases [3]. STAT3 is phosphorylated at tyrosine 705 
and serine 727 residues with tyrosine phosphorylation being associated in many cases with disease progression 
and tumorigenic potential [15]. Upon activation, phosphorylated STAT3 molecules form dimers and translocate 
into the nucleus to regulate transcription of genes, controlling cell survival and proliferation [5] [16]. Moreover, 
activated STAT3 regulates the expression of anti-apoptotic, pro-proliferative and immune response genes [5] 
[17].  

2.4. STAT4 
Several lines of evidence imply that STAT4 expression is exclusively found in myeloid cells (activated mono-
cytes, macrophages, and dendritic cells [18]. STAT4 is mostly activated by IL-12, which in turn regulates tissue 
inflammation, fibrogenesis and antiviral defense [19]. The binding of IL-12 with its receptor, in CD4+ Th1 cells 
is followed by phosphorylation of tyrosine 693 and serine 721 of STAT4 [20]. Consequently, the activated 
STAT4 moves into the nucleus, binds to DNA and enhances the production of inflammatory cytokines such as 
IFN-γ [21]. 
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2.5. STAT5 (A and B) 
Janus kinases can also phosphorylate STAT5 proteins when the latter bind to the phospho-tyrosine residues in 
their receptors. STAT5 is phosporylated at Y694 and Y699 residues for STAT5A and STAT5B, respectively, 
and these phosphorylations are essential for the steady formation of STAT5 dimers through their SH2 domains. 
Both STAT5 isoforms are activated by the same set of cytokines, nevertheless some cytokines selectively acti-
vate either STAT5A or STAT5B (e.g. prolactin activates STAT5A) [22]. Upon activation, STAT5 dimers move 
into the nucleus and bind to specific DNA sequences, mainly concerning IFN-γ [23]. Moreover, interactions 
between STAT5 N-terminal domains lead to stable tetramer formation of Stat5 [24] [25], which is critical for 
cytokine regulation and immune responses [26]. Aberrant STAT5 signaling is often associated with leukemoge-
nesis and other cancers [27] [28].  

2.6. STAT6 
The seventh member of STAT family, STAT6, regulates gene expression in several cell types, a crucial function 
for maintaining the balance between host immune defense and allergic inflammatory responses [19]. STAT6 
gene regulation in response to IL-4/IL-13 stimulation varies and depends on the cell type [29] [30]. For example 
STAT6 promotes IgE chain and CD23 gene expression in B cells, while in T cells enhances Th2 differentiation 
genes gata3 and crth2 [31]-[34]. Moreover, Lawrence et al. reported that stimulation of macrophages by IL-4/ 
IL-13 induces STAT6-dependent activation and transcription of arginase 1, Retnla, and Chi3L3 in mouse and 
indolamine 2,3-dioxygenase (IDO) in humans [31]. STAT6 not only acts as a transcriptional activator by regu-
lating Th2 development, but also suppresses gene expression through steric hindrance of binding by other tran-
scription factors [29]. This repressing activity leads to subsequent side effects and probably plays a significant 
role in Th2 cell programming [35]. 

3. Role of STAT3 in Diseases  
Normally, STAT3 functional role contributes to controlled gene regulation. Nevertheless, STAT3 aberrant acti-
vation has been involved not only in oncogenesis but also in several other types of disease. For example, pre-
vious studies suggested that Stat3 plays a crucial role in the pathogenesis of diabetic nephropathy [36] and is 
involved in cytokine- and nutrient-induced insulin resistance [37]. Moreover, excessive STAT3 signaling leads 
to development of skeletal muscle insulin resistance in type 2 diabetes [37]. 

Aberrant IL-6/STAT3 signaling has been also studied in endometriosis, which is an estrogen-dependent in-
flammatory disease. Kim et al. found higher levels of phospho-STAT3 and HIF1α (Hypoxia-inducible factor 1- 
alpha, a downstream substrate of STAT3) in the endometrium of patients with endometriosis compared with 
healthy women and proposed that consistent activation of STAT3 contributes in the pathogenesis of endometri-
osis [38].  

The JAK/STAT signaling pathway is found to be active in a variety of renal diseases and it is proposed to 
contribute in the pathophysiology of renal fibrosis. Matsui et al. referred that inhibition of the JAK/STAT sig-
naling pathway, especially JAK2 and STAT3, appeared to diminish renal fibrosis and protected renal activity 
[39]. As a result Tanq et al. [40] demonstrated that fluorofenidone (FD), a novel pyridone agent, exerts an anti- 
fibrotic effect through inhibiting STAT3 tyrosine phosphorylation in the JAK2/STAT3 pathway, consequently 
adding a new therapeutic strategy in renal fibrosis. 

STAT3 disease involvement has been also linked to dyregulations of IL-6 signaling. Several studies suggested 
that IL6 trans-signaling (complex of IL6 and soluble IL6 receptor) played a pathogenic role in lung airway 
smooth muscle diseases [41]. Classical IL6 as well as IL6 trans-signaling in human airway smooth muscle in-
volve activation of Stat3, but IL6 trans-signaling has been shown to specifically contribute to asthma pathogene-
sis and can be considered as a potential modifier of airway inflammation and remodeling [41]. 

Furthermore, it has been shown that high levels of IL10 are found in serum and tissues of patients with sys-
temic lupus erythematosus (SLE). Hedrich et al. reported that Stat3 and Stat5 regulate trans-activation and epi-
genetic remodeling of IL10 by interacting with the histone acetyltransferase p300. Specifically, the activation of 
Stat3 in T cells from SLE patients led to enhanced recruitment to regulatory regions and competitive replace-
ment of Stat5, leading to enhanced IL-10 expression [42]. As a result, Wang et al. suggested that Natura-alpha 
(a novel STAT3-Y705 inhibitor) could be used as a potential SLE inhibitor [43]. 

http://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCAQFjAA&url=http%3A%2F%2Fwww.sbhsciences.com%2Fsil6r_info.asp&ei=7fGGVeOWOMeOsgGAsYGYBg&usg=AFQjCNEtt67ynAG6c4FoW34D6KTAxQk2pA&sig2=9f9B86xr20ktFrNcCJOu-Q&bvm=bv.96339352,d.bGg
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In addition STAT3 plays a significant role in some autoimmune disorders including inflammatory bowel dis-
ease (IBD). Several lines of evidence suggested that STAT3 activation posseses a dual and contradictory role 
between innate and acquired immune responses in colitis [44]. STAT3-mediated activation of acquired immune 
responses contributed in pathogenesis of colitis by supporting the survival of pathogenic T cells, while STAT3- 
mediated activation of innate responses suppressed the pathogenesis of colitis [44]. More recent data suggested 
that several interleukins, like IL-6, IL-11, and IL-22, are highly expressed in IBD cases, and that consequent ac-
tivation of JAK/STAT3 pathway can ameliorate disease and protect the epithelial lining cells [45]. 

Moreover, experimental evidence showed that several inflammatory cytokines, such as IL-1β, tumor necrosis 
factor alpha and IL-6, are highly expressed in patients with rheumatoid arthritis (RA), leading to direct or indi-
rect activation of STAT3, which in turn enhances expression of IL-6 family cytokines and promotes sustained 
inflammation and joint destruction [46]. In addition, Gao et al. found that there is an interaction between HIF1α, 
STAT3 and Notch-1 signaling in the regulation of pro-inflammatory pathway in RA, which implied a role for 
targeting STAT3 in treatment of RA [47]. 

STAT3 regulation has also been involved in the pathophysiology of behavior. Several lines of evidence sug-
gested a relationship between changes in the immune system, mostly in IL6 expression, and depression [48]. Kong 
et al. examined the existence of an IL6-induced modulation of serotonergic neurotransmission through the STAT3 
signaling pathway which may enhance the role of IL6 in depression. Indeed, they found that IL6 directly regulated 
Serotonin Transporter protein levels (SERT) and consequently affected serotonin reuptake, thus proposing that 
IL6 could be connected to depression through a potent STAT3-dependent regulation model of SERT [48].  

Moreover, JAK/STAT3 pathway has been connected with Alzheimer’s and Huntington’s diseases [49]. Expe-
rimental evidence suggested that astrocyte reactivity is a hallmark of neurodegenerative diseases and that 
JAK/STAT3 pathway correlates with reactive astrocytes in models of acute injury. Ben Haim et al. examined 
astrocyte reactivity in progressive pathological conditions such as Alzheimer’s and Huntington’s disease and 
showed that JAK/STAT3 pathway is a common inducer of astrocyte reactivity thus adding novel information to 
the pathogenesis of neurodegenerative diseases [49] (Figure 1).  

4. Dual Role of STAT3 in Cancer 
4.1. STAT3 Tumorigenic Role 
Inappropriate STAT3 activation, mainly due to persistent tyrosine 705 phosphorylation signaling, has been con-
vincingly shown to contribute to oncogenesis and to promote the acquisition of a malignant phenotype [50]-[53]. 
Consistent activation of STAT3 in cancer transfers signals from cytokines and growth factors [54] and stimu-
lates specific target genes such as Fos, Cyclin-D, CDC25A, c-Myc or Pim1 that induce cell proliferation, sup-
press apoptotic genes (Fas) [55] and up-regulate antiapoptotic genes including BCL2 (B-Cell CLL/Lymphoma- 
2), BCLXL and Beta2-Macroglobulin [56]. 

 

 
Figure 1. STAT3 involvement in diseases other than cancer.                
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Persistent STAT3 activation has been described in various types of solid and hematological cancers and tar-
geting STAT3 expression could be a useful strategy for cancer therapies in the future [57]. For instance, activa-
tion of STAT3 by Src kinase has been shown to be essential in prostate and ovarian cancer [58]. Moreover, en-
hanced expression of BRCA1 gene (breast cancer susceptible gene 1), which has been associated with breast, 
ovarian and prostate cancer, induced constitutive phosphorylation of STAT3 at serine and tyrosine residues in 
prostate cancer cell lines, also interacting with the upstream activators JAK1 and JAK2 [59]. In addition, STAT3 
constitutive activation, mostly associated with aberrant TGF-α/EGFR signaling, contributed to HNSCC devel-
opment and growth [53] [60]. Further, activated STAT3 expression was found to significantly correlate with ex-
tent of tumor invasion, lymph node metastasis and tumor grade in colorectal cancer [61]. 

IL-6 signaling through STAT3 transcriptional activity is the main pathway involved in the growth and differ-
entiation of B cells in plasma cells malignancies [62] [63] and STAT3 is constitutively active in mononuclear cells 
of bone marrow in patients with multiple myeloma [64]. STAT3 and STAT5 are also activated in T-cell lym-
photrophic virus type I (HTLV-I-related adult T-cell) lymphoma [65]. Activated STAT3 was detected in cell lines 
of Hodgkin disease (HD), and constitutive phosphorylation of STAT3 and STAT6 is identified in Reed-Sternberg 
cells of patients with Hodgkin disease [66]. Finally, STAT3 overexpression is associated with more aggressive 
disease in acute myeloid leukemia [67].  

4.1.1. STAT3 Overactivation 
Persistent activation of STAT3 in cancer is a consequence of alterations that either overactivate this molecule or 
deactivate negative regulators of STAT3. Aberrant expression of various oncogenic protein tyrosine kinases 
(PTKs), including Src, can drive STAT3 overactivation in cancer cells [50]. Indeed, Src induces STAT3 activation, 
which in turn controls genes whose expression is required for the tumorigenic cellular transformation [68]-[70]. 
Furthermore, NPM-ALK is a constitutively active tyrosine kinase which has been proved to activate STAT3 in 
ALK-positive anaplastic large cell lymphoma [50]. Moreover, certain mutations in the kinase domain of epi-
dermal growth factor receptor (EGFR) result in excess production of IL6 and subsequent STAT3 activation in 
lung cancer and glioblastoma cells [71] [72].  

STAT3 is a transcription factor which enhances the expression of many cytokines including IL-6 and IL-10. 
These STAT3-stimulating cytokines are often found in tumors [73], in addition to those produced from inflam-
matory cells as a response to the tumor progression (IL-6, IL-10, IL-11, IL-21, IL-23, leukemia inhibitory factor 
and oncostatin) [73]. This autocrine or paracrine stimulatory pathway leads to further activation of STAT3. Sti-
mulation of STAT3 could also occur as a result of a positive feedback loop. For example, the activation of STAT3 
by v-src leads to activation of NF-κB, which in turn and under certain conditions can induce IL-6 production and 
consequently STAT3 feedback activation [74]. In another feedback model, STAT3 has been rported to promote 
the expression of a G protein-coupled receptor for the lysophospholipid sphingosine-1-phosphate (sphingosine-1- 
phosphate receptor-1), which in turn induces STAT3 activation by increasing the expression of IL-6 and en-
hancing JAK2 tyrosine kinase activity [75]. 

Furthermore, somatic mutations in STAT3 have been diagnosed in several malignancies, including hepato-
cellular adenomas, T-cell large granular lymphocytic leukemia (T-cell LGL), chronic lymphoproliferative dis-
orders of natural killer cells (CLPD-NKs), diffuse large B-cell lymphoma, and CD30+ T-cell lymphomas 
[76]-[80].  

4.1.2. Disruption of STAT3 Negative Regulation 
STAT3 persistent activation exists when a disruption in negative regulations of STAT3 occurs. Suppressors of 
cytokine signaling (SOCS) and protein tyrosine phosphatases (PTPs) are known to control STAT3 homeostasis 
of phosphorylation [81]-[83]. Experimental data suggested that loss of SOCS3 by genetic disruptions induced 
STAT3 activation and increased proliferation, survival and motility in several cancer cells [50]. 

SOCS1 can also be suppressed by aberrant gene methylation and this condition has been shown to result to 
persistent STAT3 activation in several types of cancer [84]-[87]. Similarly SHP-1, a member of tyrosine phos-
phatase family can be deregulated after epigenetic alterations, notably in hematologic malignancies [86] [88] 
[89]. Disruption of SHP-1 has been proposed to correlate with constitutive activation of STAT3 in cancer types 
including ALK-positive anaplastic large cell lymphoma, chronic myeloid leukemia and multiple myeloma. 

Finally, protein inhibitors of activated STAT3 (PIAS) reduce DNA-binding of STAT3 and consequently in-
tervene to gene transcription. An example of PIAS3 dysfanction is found in glioblastoma where reduced PIAS3 
expression correlated with increased levels of STAT3 activation and cell proliferation [90].  
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4.2. STAT3 Tumor Suppressive Role 
The oncogenic role of STAT3 is widely described in various types of cancer and mounting evidence suggests that 
aberrant STAT3 signaling contributes to malignancy through mechanisms that alter normal STAT3 activation. 
Nevertheless, a smaller number of recent investigations imply a tumor suppressive role of STAT3, which con-
tradicts its well known oncogenic function. Noteworthy is that the vast majority of these studies involve experi-
ments with mice xenografts and generally mice models. 

Using siRNA techniques in astrocytes derived from conditional knockout mice, De la Iglesia et al. demon-
strated a tumor suppressive effect of STAT3 in the absence of PTEN expression in glioblastoma. On the other 
hand, they observed an oncogenic STAT3 effect following co-expression of EGFRvIII and the interaction be-
tween these molecules in the nuclei of glioblastoma cells [91]. 

Furthermore, Musteanu et al. [92] and Lee et al. [93] used an adenomatous polyposis coli (Min/+) (multiple 
intestinal neoplasia gene) model of colorectal cancer and reported that loss of Stat3 induced tumor development at 
later stages, promoted invasion, and significantly reduced the lifespan of Stat3 (DeltaIEC) Apc (Min/+) mice [92]. 
In contrast, deletion of STAT3 in the intestinal epithelial cells reduced the multiplicity of early adenoma forma-
tion.  

Based on a study using different carcinogens in a drug-induced liver carcinogenesis investigation of conditional 
STAT3 knockout mice, it seems that the role of STAT3 depends on the type of the used carcinogen. Specifically, 
in hepatocytes with STAT3 expression compared to hepatocytes with STAT3 ablation, induction by chronic 
carbon tetrachloride hepatocytes resulted in less tumor formation, while induction by diethylnitrosamine led to 
significantly higher tumor formation [94].  

The former studies found that STAT3 can have both tumor suppressive or promoting role at the same cancer 
cells, indicating that the function of STAT3 may depend on the genetic or biochemical background of the cells. In 
addition, Wang et al. postulated that STAT3 role depends on tumor stage suggesting that, as hepatic cancer cells 
have developed, STAT3 is likely to promote tumor growth [94]. 

Moreover, Schneller et al. examined the role of Stat3 in Ras-dependent hepatocellular carcinoma progression in 
the presence and absence of p19 (ARF)/p14 (ARF) and suggested that constitutive active Stat3 played an onco-
suppressive role, while expression of Stat3 lacking Tyr (705) induced tumor progression [95]. 

Finally, some immunohistochemical studies have also correlated STAT3 expression with better clinical out-
come and prognosis. For example, Pectasides et al. studied a cohort of 102 patients with HNSCC and found that 
high nuclear expression levels of STAT3 correlated with a favorable clinical outcome [96]. In addition Ettl et al. 
examined a cohort of 286 salivary gland carcinomas and indicated that patients with strong nuclear pSTAT3 ex-
pression had a better clinical outcome compared with specimens exhibiting moderate or weak nuclear staining. 
Further, decreased lymph node and distant metastases were correlated with strong pSTAT3 nuclear staining in low 
histologic grade cases [97]. 

Similarly, Sato et al. reported that breast cancer patients with positive nuclear pSTAT3 (tyr) staining tended to 
have better survival, although not reaching statistical significance; in addition, patients with low grade, but not 
with high grade, who were positive for nuclear pStat3 (tyr) appeared to have significantly prolonged overall sur-
vival [98]. 

5. Role of Il6/STAT3 Signaling in Cancer 
Interleukin-6 (IL-6) is a cytokine secreted by T-cells and macrophages and is involved in immune and inflam-
matory responses [99]. IL-6 signaling launches with ligand binding to its receptor IL-6R and a common receptor 
subunit gp130. By this interaction, a hexameric receptor complex of two IL-6, IL-6R, and gp130 hetero-trimers is 
formed [100]. This signaling pathway is triggered during early immune responses, consequently stimulating the 
expression of various acute-phase proteins, and is referred to as classical signaling of IL-6 [101]. In addition, IL- 
6 can also bind to an existing soluble type of the IL-6 receptor (sIL-6R) and form a complex that interacts with 
gp130. This type of IL-6 signaling, called IL-6 trans-signaling, differs from classical IL-6 signaling and plays a 
significant role in the function of several cells including neutrophils, macrophages, epithelial cells and T cells 
[102]. Both IL-6 signaling pathways trigger responses including activation of JAK (Janus Kinase) kinases. JAKs 
are cytoplasmic tyrosine kinases which in mammalians consitute a protein family of four members. JAK1, JAK2 
and TYK2 are expressed in several cells, while JAK3 is found only in cells of the hematopoietic system [103]. 
JAKs and especially JAK1 is involved in the activation of STAT3 via phosphorylation of a specific tyrosine re-

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schneller%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21452288
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sidue [14] [104]. As previously described, when STAT3 becomes phosphorylated, it forms dimers and moves 
from the cytoplasm to the nucleus stimulating transcription of STAT3 target genes, including cyclin D1, Bcl-xL, 
c-myc, Mcl1 and vascular endothelial growth factor (VEGF) [104] (Figure 2). 

IL-6 has been demonstrated to be implicated in several malignancies including prostate [105], breast [106], 
lung cancer [107], and oral SCC [108], by regulating critical cellular activities such as proliferation [105] [107] 
(asangari, lin2), apoptosis [105], and invasion [106] (lin1). For example, Chang et al. has demonstrated that IL-6 
induced transient increase of STAT3 tyrosine phosphorylation in a dose-dependent manner, which in turn re-
sulted in neuroendocrine dedifferentiation and cell proliferation in non-small cell lung cancer cells [109]. More- 
over, Wan et al. observed that cancer stem cells played a role in progression and recurrence of hepatocellular 
carcinoma after therapy and that tumor-associated macrophages (TAMs) expression was associated with poor 
outcomes. They suggested that TAMs produce IL-6 and contributed to expansion of human hepatocellular car-
cinoma stem cells via STAT3 signaling [110]. 

Patel et al. documented that, in colorectal cancer cells, colonic inflammation through IL-6 signaling can result 
in metabolic changes of epithelial cells by controlling expression of cytochrome enzymes including CYP2E1 
and CYP1B1, through transcriptional and epigenetic mechanisms. Specifically CYP2E1 overexpression, as a 
result of STAT3 pathway, enhanced activation of dietary carcinogens and DNA damage, thus promoting colo-
rectal carcinogenesis [111]. Similarly, modulation of the IL-6/JAK/STAT3 signaling pathway has been pro-
posed as a potential therapeutic approach to treat patients with colorectal cancer [104]. 

PI3K-specific inhibitors are used in clinical trials for breast cancer treatment against tumors harboring 
PIK3CA mutations with conflicting results suggesting that some tumors may show resistance to PI3K inhibitors. 
Based on these observations, Yang et al. found that the existence of an IL6-STAT3 pathway contributes to re-
sistance to PI3K inhibitors by effectively triggering epithelial-mesenchymal transition and expanding cancer 
stem cell population in human breast cancer cells [112].  

In another study Zheng et al. observed that Gankyrin, a small protein with seven ankyrin-repeat domains, ex-
pressed in various cancers including hepatocellular carcinoma, colorectal cancer and pancreatic cancer, induced 
tumor growth and metastasis via IL-6/STAT3 signaling pathway in human cholangiocarcinoma [113]. 

 

 
Figure 2. STAT3 activation and signaling.                                                                      
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Furthermore, Liu et al. showed that the IL6-Stat3-AR (androgen receptor) cascade is a significant regulator of 
enzalutamide (androgen receptor antagonist drug) resistance in prostate cancer. This study also demonstrated 
that the drug Niclosamide could target IL6-Stat3-AR pathway and consequently overcome enzalutamide resis-
tance, resulting in inhibition of migration and invasion in advanced prostate cancer [114]. Finally, Cheng et al. 
have also proposed salivary IL6 and IL-8 as potential biomarkers for oral SCC [108]. 

6. Role of STAT3 Serine Phosphorylation 
As descried before, numerous investigations have demonstrated that overexpression of STAT3 is responsible for 
various oncogenic processes, such as solid tumor progression, pathological angiogenesis [115], and promotion 
of cell growth and transformation [116]. As alluded previously, it is also widely known that the oncogenic po-
tential of STAT3 depends mainly on the phosphorylation status of Tyr705 [117]. 

In contrast, STAT3 serine phosphorylation may also arise as a result of growth factor and cytokine stimula-
tion, but the role of this activation remains controversial [117]. Several studies suggested that serine activation 
could drive to both stimulating and inhibitory effects on gene transcription [118]-[122], while others postulated 
that Ser-727 phosphorylation may inhibit Tyr-705 phosphorylation or, quite the opposite, result in further STAT 
activation [123].  

The negative impact of Ser727 residue phosphorylation on STAT3 activity has been proposed in several stu-
dies indicating that Ser727 phosphorylation downregulates STAT3 tyrosine phosphorylation and causes altera-
tions in nuclear translocation and transcriptional activity [122]. Moreover, it has been suggested that Ser727 
phosphorylation either inhibits tyrosine activation or increases tyrosine dephosphorylation [124]. Mandal et al. 
found that when Stat3 Ser727 phosphorylation was reduced, tumorigenicity of glioma cells was increased prob-
ably through a CK2-PP2A (casein kinase 2—Protein phosphatase 2A) pathway followed by conversely in-
creased STAT3 tyrosine phosphorylation [15]. Moreover, Venkatasubbarao et al. [125] and Wakahara et al. 
[126] proposed that phospho-Ser727 regulated the direction of STAT3 activity by enhancing either tyrosine de-
phosphorylation or phosphorylation, mainly through TC45 phosphatase. An Erk1/2-STAT3 crosstalk in oral 
SCC has been also described by Gkouveris et al., who demonstrated that ERK1/2 inhibition is followed by in-
creases in STAT3 serine phosphorylation and increases in tyrosine phosphorylation, while ERK1/2 induction 
had the opposite effects [53].  

On the other hand, other researchers have proposed that serine phosphorylation correlated with increased 
nuclear translocation and enhanced transcriptional activity [120] [127]. Moreover, MEK-ERK signaling has 
been shown to drive Ras-induced phosphorylation of STAT3 on Ser727 and mitochondrial STAT3 is a crucial 
substrate of the Ras-MEK-ERK pathway during cellular transformation [128]. In addition, Zhang et al. sug-
gested that Ser727 phosphorylation status mediated the behavior of a variety of tumors, also demonstrating that 
Ser727 phospshorylation of mitochondrial Stat3 is required for Ras-mediated transformation of MEFs (mouse 
embryo fibroblasts) [116]. In addition, it has been shown that Ser727 phosphorylation may correlate with the 
growth and transformation of other malignancies, such as chronic lymphocytic leukemia, prostate and breast 
cancer [129]-[131]. Lee et al. reported that YB-1 (y box binding protein) prevented the apoptosis of breast can-
cer cells by AKT/mTOR signaling, resulting in STAT3 serine phosphorylation [132]. Hazan-Halevy et al. sug-
gested that constitutive STAT3 Ser727 phosphorylation played a crucial role in chronic lymphocytic leukemia 
(CLL) and targeting serine phosphorylation could be used as a novel therapeutic strategy [120]. 

Furthermore, Waitkus et al. described that activation of epidermal growth factor receptor (EGFR) and pro-
tease-activated receptor 1 (PAR-1) leads to Both Thr714 and Ser727 STAT3 phosphorylation and consequently 
in a STAT3-dependent gene induction in endothelial cells and found that this double phosphorylated STAT3 
complex is highly expressed compared to tyrosine-STAT3 levels in clear-cell renal-cell carcinoma [115].  

In another study, Miyakoshi et al. revealed that MAPK activation through FBS treatment of mouse hepatic 
carcinoma cells enhanced STAT3 phosphorylation in Ser727 and increased STAT3 nuclear translocation and 
cell proliferation [133]. Finally, Sakaguchi et al. showed that constitutive Ser727 phosphorylation in melanoma 
cells, partially mediated by the B-Raf-MEK-Erk1/2 pathway, affected cell survival and nuclear translocation of 
STAT3 [134].  

7. STAT3 Activation in Cancer Stem Cells 
Aberrant regulation and transformation of stem cells into cancer stem cells (CSCs) are found to correlate with 
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cancer development, metastasis and drug resistance [135]. It is suggested that a critical event which causes these 
cellular alterations is the existence of high Reactive oxygen species (ROS), Reactive nitrogen species (RNS) 
(ROS/RNS) and Lipoma-preferred partner (LPPs) levels in the cellular microenvironment as a result of chronic 
systemic or local inflammation [136]. In turn, the presence of high ROS/RNS expression levels is postulated to 
lead to DNA damage and oncogene activation [136]. Tumor inflammation can exist in cases of chronic trauma 
or infections (viruses or parasitic infections), chemical carcinogens, or autoimmune disorders [137]. Considering 
the fact that STAT3 is well known to play a significant role in tumor inflammatory environment, it is plausible 
that STAT3 activation is involved in CSCs regulation [136]. 

STAT3 is suggested to promote prostate tumorigenesis and high tyrosine phosphorylated STAT3 levels cor-
relate with higher Gleason score and pathologic stage of the disease [138] [139]. In contrast, inhibition of 
STAT3 signaling appears to exert antitumor effects in patient-derived PCa xenograft models [140]. Noteworthy 
is that STAT3 activation by IL-6 [141] or stress factors like ROS [142] results in enhanced self-renewal and tu-
mor-propagating capacity of prostate CSCs [143]. Moreover, Hossain et al. found that glioma-associated-human 
mesenchymal stem cells (GA-hMSCs) enhance tumorigenic activity of glioma stem cells (GSCs) by inducing 
their proliferation and self-renewal through the IL-6/gp130/STAT3 pathway [144].  

High levels of aldehyde dehydrogenase (ALDH), a detoxifying enzyme mostly expressed in progenitor and 
stem cells, in endometrial cancer patients are associated with relatively lower survival rates compared to patients 
with low levels of ALDH. Recently, van der Zee et al. reported that endometrial cancer cells with high levels of 
ALDH activity, accompanied by upregulation of IL-6 receptor subunits, exhibited CSC activities. Notably, inhi-
bition of the IL-6 receptor and its downstream effectors JAK1 and STAT3 dramatically reduced tumor cell 
growth [145]. 

Recently, Islam et al. examined the role of RhoC (a pro-metastatic oncogene) in CSCs formation in HNSCC 
cell lines. ShRNA inhibition of RhoC resulted in lower expression of ALDH and CD44 stem cell markers, while 
STAT3 serine and tyrosine levels were significantly downregulated in those RhoC-depleted HNSCC cell lines. 
The authors concluded that over activation of IL6/STAT3 pathway, mainly regulated by RhoC, controls CSC 
functions [146].  

Furthermore, Won et al. indicated that high levels of CSC marker CD133 correlate with tumor growth and 
poor prognosis in hepatocellular carcinoma (HCC) and reported that STAT3 activation via IL-6 stimulation in-
creased protein levels of CD133 and promoted cancer progression. In contrast, silencing of CD133 resulted in 
cell cycle arrest and tumor suppression by causing downregulation of cytokine-related genes, including TACC1, 
ACF7 and CKAP5. Also, treatment with sorafenib and nifuroxazide inhibited STAT3 activation and CD133 ex-
pression leading to reduced HCC xenograft formation [147]. 

Moreover, Chen et al. investigated the effect of the neuroleptic drug pimozide in HCC cells or stem-like cells 
and found that treatment with pimozide resulted in reduced STAT3 activity, mainly manifested by both lower 
luciferase activity and expression of STAT3 target genes. Furthermore, IL6-induced tumorigenic effect in stem- 
like cells was decreased after pimozide treatment [148].  

In a recent investigation, Zhao et al. showed that vascular endothelial growth factor-A (VEGF), promotes 
breast and lung CSC self-renewal via VEGFR-2/JAK2/STAT3 binding, resulting in STAT3 activation and en-
suing upregulation of Myc and Sox2. These novel findings support the notion that, in addition to angiogesis, 
VEGF drives tumor-initiating CSC self-renewal through VEGFR-2/STAT3 signaling [149]. Finally, Thakur et 
al. studied the effect of Shikonin (Shk) on breast cancer and investigated the existence of a possible anti-CSC 
role. Treatment of cells with Shk drove to lower levels of various epithelial to mesenchymal transition (EMT) 
and CSC associated markers, accompanied by inhibition of STAT3, FAK (Focal adhesion kinase) and Src, pro-
posing a tumor suppressive effect in breast cancer [135]. 

8. Conclusions 
In summary, a plethora of studies indicate that deregulation of STAT3 pathway is involved in various diseases, 
including many cancer types, revealing the significance of retaining normal STAT3 signaling for cellular stabil-
ity.  

STAT3 constitutive activation has been shown to contribute to tumor development and progression, while 
IL-6/JAK pathway plays a crucial role in aberrant STAT3 signaling cascades. In addition, the role of STAT3 se-
rine phosphorylation, as supporting or opposing the effects of tyrosine phosphorylation in the mechanisms of 
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cancer pathology, needs further elucidation. More intriguing is the recent evidence demonstrating divergent 
roles of STAT3 in cancer biology, which may on certain occasions function as a potent tumor suppressor. Even 
grater enthusiasm has been generated by the latest discoveries implicating STAT3 in the regulation of cancer 
stem cells in various types of malignancies.  

Understanding the complexity of STAT3 activation, as well as the significance of this signaling pathway in 
cancer, holds great promise for the development of new therapeutic strategies in several disorders, including 
cancer. 
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Abbreviations 
ALDH: Aldehyde dehydrogenase 
AR: Androgen receptor 
BRCA1: Breast cancer susceptible gene 1 
CK2-PP2A: Casein kinase 2—protein phosphatase 2A 
CLL: Chronic lymphocytic leukemia  
CSCs: Cancer stem cells  
EGFR: Epidermal growth factor receptor  
EMT: Epithelial to mesenchymal transition  
FD: Fluorofenidone 
GSCs: Glioma stem cells 
HCC: Hepatocellular carcinoma  
HIF1α: Hypoxia-inducible factor 1-alpha 
HNSCC: Head and neck squamous cell carcinoma 
IBD: Inflammatory bowel disease 
IFN: Interferon 
JAK: Janus kinase 
LPPs: Lipoma-preferred partner 
MEFs: Mouse embryo fibroblasts 
PAR-1: Protease-activated receptor 1 
PIAS: Protein inhibitors of activated STAT 
PTKs: Protein tyrosine kinases 
PTPs: Protein tyrosine phosphatases  
RA: Rheumatoid arthritis  
RNS: Reactive nitrogen species  
ROS: Reactive oxygen species  
SERT: Serotonin transporter  
Shk: Shikonin  
SLE: Systemic lupus erythematosus  
SOCS: Suppressors of cytokine signaling  
STAT: Signal transducers and activators of transcription 
TAMs: Tumor-associated macrophages  
VEGF: Vascular endothelial growth factor 
YB-1: y box binding protein 
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