Investigation of the Transition Reaction of Tobermorite to Xonotlite under Influence of Additives

DOI: 10.4236/aces.2015.52022   PDF   HTML   XML   3,738 Downloads   4,477 Views   Citations


The objective of the present work was to investigate the transition reaction of the calcium silicate hydrate tobermorite into xonotlite under influence of additives. Tobermorite is the main binding agent in steam hardened building materials and the appearance of xonotlite indicates the progress of hardening and an overcuring of the material. Hydrothermal experiments under addition of sucrose, calcium formate and calcium chloride dihydrate to the main components quartz and lime were done using temperatures of 220°C and a reaction time of 40.5 h. All experiments were performed with powders as well as with pressed educts. The products of all syntheses were analyzed with XRD, SEM/EDX and FTIR. The references as well as the syntheses with calcium chloride dihydrate led to the formation of 11 Å tobermorite and xonotlite. The former showed the best results and even synthesis with pressed educts and calcium chloride dihydrate revealed an accelerating effect of the additive. In contrast syntheses with sucrose had the worst reactivity and led to the formation of calcite beside the CSH-phase scawtite. The additive calcium formate was only slightly oppressing the crystallization of tobermorite and favouring the formation of xonotlite. Syntheses with pressed pellets and sucrose or calcium formate showed generally worse results.

Share and Cite:

Hartmann, A. , Schulenberg, D. and Buhl, J. (2015) Investigation of the Transition Reaction of Tobermorite to Xonotlite under Influence of Additives. Advances in Chemical Engineering and Science, 5, 197-214. doi: 10.4236/aces.2015.52022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Taylor, H.F.W. (1990) Cement Chemistry. Academic Press, London.
[2] Dodson, V. (1990) Concrete Admixtures. Van Nostrand Reinhold, New York.
[3] Rixom, R. and Mailgavanam, N. (1999) Chemical Admixtures for Concrete. Spon Press, Taylor and Francis, Oxford, New York.
[4] Hermann, K. (1995) Chemikalien, die auf Beton wirken. Cement Bulletin, 63, 3.
[5] Ludwig, U. (1983) über die Wirkung von Verzogerern auf das Erstarren der Zemente. Beton-Information, 23, 31.
[6] Thomas, N.L. and Birchall, J.D. (1983) The Retarding Action of Sugars on Cement Hydration. Cement and Concrete Research, 13, 830-842.
[7] Thomas, N.L. and Birchall, J.D. (1984) A Reply to a Discussion by S Chatterji of “The Retarding Action of Sugars on Cement Hydration” by N L Thomas and J D Birchall. Cement and Concrete Research, 14, 761-762.
[8] Birchall, J.D. and Thomas, N.L. (1984) The Mechanism of Retardation of Setting of OPC by Sugars. Br. Ceram. Proc., 35, 305-315.
[9] Ludwig, U. and Urrutia, C. (1989) Zum Mechanismus der Wirkung von Saccharose auf das Erstarren und Erharten von Zementen. Zement-Kalk-Gips, 42, 431-436.
[10] Kantro, D.L. (1975) Tricalcium Silicate Hydration in the Presence of Various Salts. Journal of Testing and Evaluation, 3, 312.
[11] Kondo, R., Daimon, M., Sakai, E. and Ushiyama, H. (1977) Influence of Inorganic Salts on the Hydration of Tricalcium Silicate. Journal of Applied Chemistry and Biotechnology, 27, 191-197.
[12] Wilding, C.R., Walter, A. and Double, D.D. (1984) A Classification of Inorganic and Organic Admixtures by Conduction Calorimetry. Cement and Concrete Research, 14, 185-194.
[13] Singh, N.B. and Abha, K. (1983) Effect of Calcium Formate on the Hydration of Tricalcium Silicate. Cement and Concrete Research, 13, 619-625.
[14] Brown, B.W., Harner, C.L. and Prosen, E.J. (1986) The Effect of Inorganic Salts on Tricalcium Silicate Hydration. Cement and Concrete Research, 16, 17-22.
[15] Massazza, F. and Gilioli, C. (1983) Contribution to the Alinite Knowledge II. Cemento, 2, 101-106.
[16] Cheeseman, C.R. and Asavapisit, S. (1999) Effect of Calcium Chloride on the Hydration and Leaching of Lead-Retarded Cement. Cement and Concrete Research, 29, 885-892.
[17] Gartner, E.M. and Gaidis, J.M. (1989) Hydration Mechanisms, I. In: Skalny, J.P., Ed., Materials Science of Concrete, The American Ceramic Society, Westerville, 95-125.
[18] Gundlach, H. (1969) Dampfgehartete Baustoffe. Bauverlag GmbH, Wiesbaden.
[19] Mortel, H. (1978) Die Gefügeentwicklung der CSH-Phasen in Kalksandstein im Temperaturbereich von 120-250°C bei Haltezeiten von 1/2 Stunden—2 Wochen. Folgerungen für die Eigenschaften von Kalksilikatprodukten. Internationales Symposium über die Beziehungen zwischen den Eigenschaften von KS-Produkten und den Bindemittelaufbau, Karlsruhe 1978, Session I, Vortrag 4, 1-27. Vlg Forschungsvereinigung Kalk-Sand e.V. Hannover.
[20] Mortel, H. (1980) Mineralbestand, Gefüge und physikalische Eigenschaften von Kalksandsteinen. Fortschritte der Mineralogie, 58, 37-67.
[21] Hamid, S.R. (1981) The Crystal Structure of the 11A Natural Tobermorite Ca2.25[Si3O7.5(OH)1.5].1H2O. Zeitschrift für Kristallographie, 154, 189-198.
[22] Merlino, S., Bonaccorsi, E. and Armbruster, T. (1999) Tobermorites: Their Real Structure and Order-Disorder (OD) Character. American Mineralogist, 84, 1613-1621.
[23] Merlino, S., Bonaccorsi, E. and Armbruster, T. (2001) The Real Structure of Tobermorite 11Å: Normal and Anomalous Forms, OD Character and Polytypic Modifications. European Journal of Mineralogy, 13, 577-590.
[24] Kendel, F. (1978) Dampfhartung von Kalksandstein bei verlangerter Hartezeit und niedrigen Temperaturen: Einfluss auf die Steineigenschaften. Schriftenreihe Forschungsvereinigung Kalk-Sand e.V. Hannover, Nr. 46, 1-49.
[25] Hartmann, A. and Buhl, J.-Ch. (2010) The Influence of Sucrose on the Crystallization Behaviour in the System CaO-SiO2-C12H22O11-H2O under Hydrothermal Conditions. Materials Research Bulletin, 45, 396-402.
[26] Hartmann, A., Khakhutov, M. and Buhl, J.-Ch. (2014) Hydrothermal Synthesis of CSH-Phases (Tobermorite) under Influence of Ca-Formate. Materials Research Bulletin, 51, 389-396.
[27] Hartmann, A., Schulenberg, D. and Buhl, J.-Ch. (2013) Untersuchung der übergangsreaktion von Tobermorit zu Xonotlit unter dem Einfluss von Additiven und erhohter Temperatur. Z. Krist. Suppl., No. 33, MS13-T04, 40-41.
[28] Hartmann, A., Buhl, J.-Ch. and van Breugel, K. (2007) Structure and Phase Investigations on Crystallization of 11 Å Tobermorite in Lime Sand Pellets. Cement and Concrete Research, 37, 21-31.
[29] International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, Pennsylvania 19073-3273, USA.
[30] Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F. and Cong, X. (1999) Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Farinfrared Spectroscopy. Journal of the American Ceramic Society, 82, 742-748.
[31] Günzler, H. and Grünlich, H.-U. (2003) IR Spectroscopy: An Introduction. Wiley-VCH, Weinheim.
[32] Rickert, J. (2004) Influence of Retarders on the Hydration of Clinker and Cement, Part II. Concrete Technology Reports 2001-2003. Verlag Bau + Technik GmbH, Düsseldorf.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.