[1]
|
Mitchell, T. (1997) Machine Learning. McGraw-Hill, New York.
|
[2]
|
Malik Yousef, N.N. and Khalifav, W. (2010) A Comparison Study between One-Class and Two-Class Machine Learning for MicroRNA Target Detection. Journal of Biomedical Science and Engineering, 3, 347-252.
http://dx.doi.org/10.4236/jbise.2010.33033
|
[3]
|
Jain, A.K. and Dubes, R.C. (1988) Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs.
|
[4]
|
Hartigan, J. (1975) Clustering Algorithms. Wiley, New York.
|
[5]
|
Tryon, R.C. and Bailey, D.E. (1973) Cluster Analysis. McGraw-Hill, New York.
|
[6]
|
Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy. Freeman, San Francisco.
|
[7]
|
Anderberg, M.R. (1973) Cluster Analysis for Applications. Academic Press, New York.
|
[8]
|
Jardine, N. and Sibson, R. (1971) Mathematical Taxonomy. Wiley, London.
|
[9]
|
MacQueen, J.B. (1967) Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.
|
[10]
|
Dunn, J.C. (1973) A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3, 32-57. http://dx.doi.org/10.1080/01969727308546046
|
[11]
|
Bezdek, J.C. (1981) Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York.
http://dx.doi.org/10.1007/978-1-4757-0450-1
|
[12]
|
Johnson, S.C. (1967) Hierarchical Clustering Schemes. Psychometrika, 32, 241-254.
http://dx.doi.org/10.1007/BF02289588
|
[13]
|
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 39, 1-38.
|
[14]
|
Yuan, Y. and Shaw, M.J. (1995) Induction of Fuzzy Decision Trees. Fuzzy Sets and Systems, 69, 125-139.
http://dx.doi.org/10.1016/0165-0114(94)00229-Z
|
[15]
|
Vapnik, V. (1995) The Nature of Statistical Learning Theory. Springer, New York.
http://dx.doi.org/10.1007/978-1-4757-2440-0
|
[16]
|
Donaldson, I., Martin, J., De Bruijn, B., Wolting, C., Lay, V., Tuekam, B., Zhang, S.D., Baskin, B., Bader, G., Michalickova, K., Pawson, T. and Hogue, C.W.V. (2003) PreBIND and Textomy—Mining the Biomedical Literature for Protein-Protein Interactions Using a Support Vector Machine. BMC Bioinformatics, 4, 11.
http://dx.doi.org/10.1186/1471-2105-4-11
|
[17]
|
Pavlidis, P., Weston, J., Cai, J. and Grundy, W.N. (2001) Gene Functional Classification from Heterogeneous Data. Proceedings of the 5th Annual International Conference on Computational Biology, Montreal, 22-25 April 2001, 249-255.
|
[18]
|
Haussler, D. (1999) Convolution Kernels on Discrete Structuresed. Technical Report UCSCCRL-99-10, Baskin School of Engineering, University of California, Santa Cruz.
|
[19]
|
Novak, K. (2006) Taking out the Trash. Nature Reviews Cancer, 6, 92. http://dx.doi.org/10.1038/nrc1807
|
[20]
|
Novak, K. (2006) Marked Aggression. Nature Reviews Cancer, 6, 96. http://dx.doi.org/10.1038/nrc1806
|
[21]
|
Goymer, P. (2006) Different Treatment. Nature Reviews Cancer, 6, 94-95. http://dx.doi.org/10.1038/nrc1808
|
[22]
|
Young, R.A. (2000) Biomedical Discovery with DNA Arrays. Cell, 102, 9-15.
http://dx.doi.org/10.1016/S0092-8674(00)00005-2
|
[23]
|
Hergenhahn, M., Muhlemann, K., Hollstein, M. and Kenzelmann, M. (2003) DNA Microarrays: Perspectives for Hypothesis-Driven Transcriptome Research and for Clinical Applications. Current Genomics, 4, 543-555.
http://dx.doi.org/10.2174/1389202033490231
|
[24]
|
ESRC (Economic and Social Research Council) (2002) Genomics Scenario Project 2. Overview and Forecasts of the Applications of Genomics. http://www.cric.ac.uk/cric/projects/genomics/overview.pdf
|
[25]
|
Collins, F.S., Green, E.D., Guttmacher, A.E. and Guyer, M.S. (2003) A Vision for the Future of Genomics Research. Nature, 422, 835-847. http://dx.doi.org/10.1038/nature01626
|
[26]
|
Eggen, A. (2003) Basics and Tools of Genomics. Outlook on Agriculture, 32, 215-217.
http://dx.doi.org/10.5367/000000003322740531
|
[27]
|
Jeffrey, S.S. (2008) Cancer Biomarker Profiling with microRNAs. Nature Biotechnology, 26, 400-401.
http://dx.doi.org/10.1038/nbt0408-400
|
[28]
|
Heneghan, H.M., Miller, N., Lowery, A.J., Sweeney, K.J. and Kerin, M.J. (2010) MicroRNAs as Novel Biomarkers for Breast Cancer. Journal of Oncology, 2010, Article ID: 950201.
|
[29]
|
Wang, Y., Tetko, I.V., Hall, M.A., Frank, E., Facius, A., Mayer, K.F.X. and Mewes, H.W. (2005) Gene Selection from Microarray Data for Cancer Classification—A Machine Learning Approach. Computational Biology and Chemistry, 29, 37-46. http://dx.doi.org/10.1016/j.compbiolchem.2004.11.001
|
[30]
|
Li, T., Zhang, C.L. and Ogihara, M. (2004) A Comparative Study of Feature Selection and Multiclass Classification Methods for Tissue Classification Based on Gene Expression. Bioinformatics, 20, 2429-2437.
http://dx.doi.org/10.1093/bioinformatics/bth267
|
[31]
|
Inza, I., Larrañaga, P., Blanco, R. and Cerrolaza, A.J. (2004) Filter versus Wrapper Gene Selection Approaches in DNA Microarray Domains. Artificial Intelligence in Medicine, 31, 91-103.
http://dx.doi.org/10.1016/j.artmed.2004.01.007
|
[32]
|
Zhang, X.G., Lu, X., Shi, Q., Xu, X.Q., Leung, H.C.E., Harris, L.N., et al. (2006) Recursive SVM Feature Selection and Sample Classification for Mass-Spectrometry and Microarray Data. BMC Bioinformatics, 7, 197.
http://dx.doi.org/10.1186/1471-2105-7-197
|
[33]
|
Duan, K.B., Rajapakse, J.C., Wang, H.Y. and Azuaje, F. (2005) Multiple SVM-RFE for Gene Selection in Cancer Classification with Expression Data. IEEE Transactions on NanoBioscience, 4, 228-234.
http://dx.doi.org/10.1109/TNB.2005.853657
|
[34]
|
Yang, X.W., Lin, D.Y., Hao, Z.F., Liang, Y.C., Liu, G.R. and Han, X. (2003) A Fast SVM Training Algorithm Based on the Set Segmentation and k-Means Clustering. Progress in Natural Science, 13, 750-755.
http://dx.doi.org/10.1080/10020070312331344360
|
[35]
|
Pan, W. (2002) A Comparative Review of Statistical Methods for Discovering Differentially Expressed Genes in Replicated Microarray Experiments. Bioinformatics, 18, 546-554. http://dx.doi.org/10.1093/bioinformatics/18.4.546
|
[36]
|
Li, F. and Yang, Y.M. (2005) Analysis of Recursive Gene Selection Approaches from Microarray Data. Bioinformatics, 21, 3741-3747. http://dx.doi.org/10.1093/bioinformatics/bti618
|
[37]
|
Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002) Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 46, 389-422. http://dx.doi.org/10.1023/A:1012487302797
|
[38]
|
Xiong, M., Fang, X. and Zhao, J. (2001) Biomarker Identification by Feature Wrappers. Genome Research, 11, 1878-1887.
|
[39]
|
Yousef, M., Jung, S., Showe, L.C. and Showe, M.K. (2007) Recursive Cluster Elimination (RCE) for Classification and Feature Selection from Gene Expression Data. BMC Bioinformatics, 8, 144.
http://dx.doi.org/10.1186/1471-2105-8-144
|
[40]
|
Luo, L.K., Huang, D.F., Ye, L.J., Zhou, Q.F., Shao, G.F. and Peng, H. (2011) Improving the Computational Efficiency of Recursive Cluster Elimination for Gene Selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 122-129. http://dx.doi.org/10.1109/TCBB.2010.44
|
[41]
|
Grate, L. (2005) Many Accurate Small-Discriminatory Feature Subsets Exist in Microarray Transcript Data: Biomarker Discovery. BMC Bioinformatics, 6, 97. http://dx.doi.org/10.1186/1471-2105-6-97
|
[42]
|
Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P. and Saeys, Y. (2009) Robust Biomarker Identification for Cancer Diagnosis with Ensemble Feature Selection Methods. Bioinformatics, 26, 392-398.
http://dx.doi.org/10.1093/bioinformatics/btp630
|
[43]
|
Deng, X., Geng, H. and Ali, H.H. (2007) Cross-Platform Analysis of Cancer Biomarkers: A Bayesian Network Approach to Incorporating Mass Spectrometry and Microarray Data. Cancer Informatics, 3, 183-202.
|
[44]
|
Huang, H.C., Jupiter, D. and VanBuren, V. (2010) Classification of Genes and Putative Biomarker Identification Using Distribution Metrics on Expression Profiles. PLoS ONE, 5, e9056. http://dx.doi.org/10.1371/journal.pone.0009056
|
[45]
|
Oh, J.H., Kim, Y.B., Gurnani, P., Rosenblatt, K.P. and Gao, J.X. (2008) Biomarker Selection and Sample Prediction for Multi-Category Disease on MALDI-TOF Data. Bioinformatics, 24, 1812-1818.
http://dx.doi.org/10.1093/bioinformatics/btn316
|
[46]
|
Li, Y., Wang, N., Perkins, E.J., Zhang, C.Y. and Gong, P. (2010) Identification and Optimization of Classifier Genes from Multi-Class Earthworm Microarray Dataset. PLoS ONE, 5, e13715.
http://dx.doi.org/10.1371/journal.pone.0013715
|
[47]
|
Yousef, M., Ketany, M., Manevitz, L., Showe, L.C. and Showe, M.K. (2009) Classification and Biomarker Identification Using Gene Network Modules and Support Vector Machines. BMC Bioinformatics, 10, 337.
http://dx.doi.org/10.1186/1471-2105-10-337
|
[48]
|
Nacu, S., Critchley-Thorne, R., Lee, P. and Holmes, S. (2007) Gene Expression Network Analysis and Applications to Immunology. Bioinformatics, 23, 850-858. http://dx.doi.org/10.1093/bioinformatics/btm019
|
[49]
|
Pirooznia, M., Yang, J.Y., Yang, M.Q. and Deng, Y.P. (2008) A Comparative Study of Different Machine Learning Methods on Microarray Gene Expression Data. BMC Genomics, 9, S13. http://dx.doi.org/10.1186/1471-2164-9-S1-S13
|
[50]
|
Tai, F. and Pan, W. (2007) Incorporating Prior Knowledge of Predictors into Penalized Classifiers with Multiple Penalty Terms. Bioinformatics, 23, 1775-1782. http://dx.doi.org/10.1093/bioinformatics/btm234
|