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Abstract 
Computational biology plays a significant role in the discovery of new biomarkers, the analyses of 
disease states and the validation of potential biomarkers. Biomarkers are used to measure the 
progress of disease or the physiological effects of therapeutic intervention in the treatment of 
disease. They are also used as early warning signs for various diseases such as cancer and in-
flammatory diseases. In this review, we outline recent progresses of computational biology appli-
cation in research on biomarkers discovery. A brief discussion of some necessary preliminaries on 
machine learning techniques (e.g., clustering and support vector machines—SVM) which are 
commonly used in many applications to biomarkers discovery is given and followed by a descrip-
tion of biological background on biomarkers. We further examine the integration of computation-
al biology approaches and biomarkers. Finally, we conclude with a discussion of key challenges for 
computational biology to biomarkers discovery. 
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1. Introduction 
Machine learning is the subfield of artificial intelligence which focuses on methods to construct computer pro-
grams that learn from experience with respect to some class of tasks and a performance measure [1]. 

Machine learning enables one to generate automatic rules based on observation of the appropriate examples 
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by the learning machine. However, the selection and design of the features that will be considered in order to 
represent each example for the learning process are very important and influence the classifier performance [2]. 

Each instance in any dataset used by the machine learning methods is presented by a sequence of features, 
where each instance has the same number and types of features. The features can be categorical (i.e. gender), 
numerical (i.e. weight, size, age), and Boolean (i.e. sick? married?). So, the algorithms of the machine learning 
were asked to explain the relationships between the features in the data. 

There are two major settings of learning schemes in machine learning. One is called unsupervised learning, 
where no prior information is given to the learner regarding the data or the output. It studies how systems can 
learn to represent particular input data in a way to find natural partitions (grouping/clustering) of patterns. Clus-
tering is a simple classical method of the unsupervised learning, which partitions the data set into clusters, so 
that the data in each subset share some common trait according to some defined distance measure.  

The main goal of clustering is to reduce the amount of data by grouping similar data items together. Most of 
the unsupervised learning methods use a measure of similarity between patterns in order to group them into 
clusters. The simplest of these involves defining a distance between patterns. For patterns whose features are 
numeric, the distance measure can be ordinary Euclidean distance between two instances, or Manhattan distance 
or any other similarity function. Figure 1 describes a simple example where a given set of sample points is 
clustered into three clusters around three different centers. It was noted that the clustering algorithm got data 
where no prior information was given. Moreover, the centers and clusters shapes were unknown, and then the 
learner studied the data and clustered it into three clusters as shown in the example.  

Clustering methods [3]-[8] can be divided into four basic types:  
 Exclusive clustering (e.g., K-means algorithm [9]).  
 Overlapping clustering (e.g., fuzzy C-means algorithm [10] and improved by Bezdek [11]).  
 Hierarchical clustering (e.g., hierarchical clustering algorithm which was defined by Johnson in 1967 [12]). 
 Probabilistic (e.g., expectation-maximization (EM) algorithm [13]). 

In the other setting, which is a termed supervised learning, the instances are given with known labels; its main 
goal is to build a classifier which then makes predictions about future instances to assign their class labels. The 
dataset will be divided into two partitions: one as a training dataset, and the second as a testing data set. The 
classifier was built according to the training dataset and its performance was measured by the performance of 
the classifier over the testing dataset. The example in Figure 2 has two classes (red class and blue class) and the 
classifier was asked to classify the black square point. In this case, if the classifier classifies the new instances 
according to the first nearest neighbor, then the black square will be classified as a blue class. 

Some of the popular classification algorithms are:  
Decision trees are trees that classify instances by sorting them based on feature values. Each node in a deci-

sion tree represents a feature in an instance to be classified, and each branch represents a value that the node can 
assume. Instances are classified starting at the root node and sorted based on their feature values [14].  

Support vector machines (SVMs) are a learning machine developed by Vapnik [15]. The performance of this 
algorithm, as compared to other algorithms, has proven to be particularly useful for the analysis of various clas-
sification problems, and has recently been widely used in the bioinformatics field [16]-[18]. Linear SVMs are 
usually defined as SVMs with linear kernel. The training data for linear SVMs could be linear non-separable and 
then soft-margin SVM could be applied. Linear SVM separates the two classes in the training data by producing 
 

 
Figure 1. Data samples clustered into three clusters around three different 
centers.                                                          
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the optimal separating hyper-plane with a maximal margin between class 1 and class 2 samples (Figure 3). 
Given a training set of labeled examples ( ),  1, ,i ix y i l=   where t

ix R∈  and { }1, 1iy ∈ + − , the support vector 
machines (SVMs) find the separating hyper-plane of the form 0 ,tw x b w R b R⋅ + = ∈ ∈ . 

Here, w is the “normal” of the hyper-plane. The constant b defines the position of the hyper-plane in the space. 
One could use the following formula as a predictor for a new instance: ( ) ( )signf x w x b= ⋅ +  (for more informa-
tion see Vapnik [15]). 

2. Biomarker-Biological Background 
A biomarker is a gene, protein/peptide or metabolite present in a biological system, used to indicate a physio-
logical or pathological state that can be recognized or monitored [19]-[21]. Biomarker discovery is a challenging 
process; a good biomarker has to be sensitive, specific and its test highly standardized and reproducible. 

Genomic studies provide scientists with methods to quickly analyze genes and their products en masse. DNA 
microarray technologies permit systematic approaches to biological discovery that has begun to have a profound 
impact on biological research, pharmacology, and medicine. The ability to obtain quantitative information about 
the complete transcription profile of cells promises to be an exceptionally powerful means to explore basic bi-
ology, diagnose disease, facilitate drug development, tailor therapeutics to specific pathologies, and generate 
databases with information about living processes [22]. 
 

 
Figure 2. An example of how the classifiers work.                            

 

 
Figure 3. A simple linear support vector.                                    
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Gene expression studies bridge the gap between DNA information and trait information by dissecting bio-
chemical pathways into intermediate components between genotype and phenotype. These studies open new 
avenues for identifying complex disease genes and biomarkers for disease diagnosis and for assessing drug effi-
cacy and toxicity. 

For years, scientists studied one gene at a time and genes were indeed studied in isolation from the larger 
context of other genes. Nowadays, genomics studies the genome of organisms as a whole. It is based on high- 
throughput techniques allowing a wide picture of gene characteristics. The most popular high throughput tech-
niques are arrays, which are an orderly arrangement of a great number of samples allowing large-scale studies 
(http://www.gene-chips.com/).  

The first arrays were made using DNA samples. This is the genomic area, which emerged from the sequenc-
ing of genomes from many organisms. The development of the first arrays to study a great number of genes at a 
time started many years ago [23] and has widely expanded since then. But now, we can array DNA and RNA 
probes, proteins, antibodies and even biological samples allowing new types of research. Furthermore, other 
types of high throughput techniques are currently developing, for instance to study metabolites. 

Genomics is thus linked to the development of new biotechnology which covers a broad field of disciplines 
(biology, computer science, chemistry, physics, and engineering) and which converge and work in synergy to 
advance rapidly. Genomics involves the identification of organism’s genes and understanding how the genes 
work using new biotechnological approaches [24]. 

Recent advances in genomics are bringing about a revolution in our understanding of the molecular mechan-
isms of phenotypes, including the complex interplay of genetic and environmental factors [25]. 

Genomics divided into two basic areas, structural genomics and functional genomics (also called post-ge- 
nomic area) [26]. In the former, the target of research is DNA which corresponds to the genetic background of 
organisms. Structural genomics is therefore clearly related to genetics. In functional genomics, the targets of re-
search are the key molecules which give life to the cells: RNA, proteins and also metabolites (which are both bi-
ologically active molecules within cells and tissues). Functional genomics allows the detection of genes that are 
turned on/off at any given time depending on environmental factors. 

Today, genomics has induced two new paradigms in biology. The first paradigm is a new approach allows the 
study of the complex network through which genes and proteins communicate. It implies the combination of 
expertise from biologists, engineers, chemists, and computer scientists. This multidisciplinary approach allows 
the development of systems biology. The second paradigm is a direct consequence of more available informa-
tion derived from genomics studies. The raw data needs to be analyzed and then to be used in the systemic ap-
proach indicated above. This led the development of bioinformatics which needs the use of computers to man-
age biological information. 

The practical applications of gene expression analyses are numerous and only beginning to be realized. One 
particularly powerful application of gene expression analyses is biomarker identification, which can be used for 
disease risk assessment, early detection, prognosis, prediction response to therapy, and preventative measures is 
a challenging task for cancer prevention and the improvement of treatment outcomes. Approaches to cancer 
biomarker discovery include genomic, epigenomic, transcriptomic, and proteomic analyses. 

Current efforts in the laboratory focus on the identification of biomarkers in chronic lymphocytic leukemia, 
lung cancer and colon cancer. Among the biomarkers we consider are plasma microRNAs (miRNAs). miRNAs 
are a class of small RNAs that function as regulators of gene expression. Alteration of gene expression patterns 
due to dysregulation of miRNAs is a common theme in tumorigenesis. High concentrations of cell-free miRNAs 
originating from the primary tumor have been found in the plasma of cancer patients, and several lines of evi-
dence indicate that plasma miRNAs are associated with specific vesicles called exosomes. Plasma miRNAs have 
emerged as a promising source of cancer biomarkers [27]. 

A recent discovery of quantifiable circulating cancer-associated miRNAs, expose the immense potential for 
their use as novel minimally invasive biomarkers for breast and other cancers [28]. 

In this section, structural genomics and the different fields of functional genomics (RNA studies, proteomics, 
metabolomics) will be first detailed for the reader to better understand what genomics is, before the description 
of the two new paradigms in biology derived from genomics (systemic approaches, bioinformatics). 

3. Computational Approaches for Biomarker Discovery 
DNA microarray technologies permit systematic approaches to biological discovery that has begun to have a 

http://www.gene-chips.com/
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profound impact on biological research, pharmacology, and medicine. The ability to obtain quantitative infor-
mation about the complete transcription profile of cells promises to be an exceptionally powerful means to ex-
plore basic biology, diagnose disease, facilitate drug development, tailor therapeutics to specific pathologies, 
and generate databases with information about living processes [22]. 

Gene expression studies bridge the gap between DNA information and trait information by dissecting bio-
chemical pathways into intermediate components between genotype and phenotype. These studies open new 
avenues for identifying complex disease genes and biomarkers for disease diagnosis and for assessing drug effi-
cacy and toxicity. 

The practical applications of gene expression analyses are numerous and only beginning to be realized. One 
particularly powerful application of gene expression analyses is biomarker identification, which can be used for 
disease risk assessment, early detection, prognosis, prediction response to therapy, and preventative measures. 

4. Computational Biomarker (Features) Selection 
Classification of samples from gene expression datasets usually involves small numbers of samples and tens of 
thousands of genes. The problem of selecting those biomarker genes that are important for distinguishing the 
different sample classes being compared poses a challenging problem in high dimensional data analysis and the 
potential biomarkers are important in improvement in diagnostics and therapeutics development.  A variety of 
methods to address these types of problems have been implemented [29]-[35]. These methods can be divided 
into two main categories: those that rely on filtering methods and those that are model-based or so-called wrap-
per approaches [29] [31].  

W. Pan [35] has reported a comparison of different filtering methods, highlighting similarities and differences 
between three main methods. The filtering methods, although faster than the wrapper approaches, are not partic-
ularly appropriate for establishing rankings among significant genes, as each gene is examined individually and 
correlations among the genes are not taken into account. Although wrapper methods appear to be more accurate, 
filtering methods are presently more frequently applied to data analysis than wrapper methods [31].  

Li and Yang [36] compared the performance of support vector machine (SVM) algorithms and ridge regres-
sion (RR) for classifying gene expression datasets and also examined the contribution of recursive procedures to 
the classification accuracy. Their study explicitly shows that the way in which the classifier penalizes redundant 
features in the recursive process has a strong influence on its success. They concluded that RR performed best in 
this comparison and further demonstrate the advantages of the wrapper method over filtering methods in these 
types of studies.  

Guyon et al. [37] compared the usefulness of RFE (for SVM) against the “naïve” ranking on a subset of genes. 
The naïve ranking is just the first iteration of RFE to obtain ranks for each gene. They found that SVM-RFE is 
superior to SVM without RFE and also to other multivariate linear discriminant methods, such as linear discri-
minant analysis (LDA) and mean-squared-error (MSE) with recursive feature elimination. See Figure 4(b) for 
the procedure of SVM-RFE. 

Xiong, Fang et al. [38] Propose a general framework to incorporate feature (gene) selection into pattern rec-
ognition in the process to identify biomarkers. Using this framework, they develop three feature wrappers that 
search through the space of feature subsets using the classification error as measure of goodness for a particular 
feature subset being “wrapped around”: linear discriminant analysis, logistic regression, and support vector ma-
chines. 

Yousef, Jung et al. [39], describe a new method for gene selection and classification, which is comparable to 
or better than some methods which are currently applied. Their method (SVM-RCE) combines the K-means al-
gorithm for gene clustering and the machine learning algorithm, SVMs [15], for classification and gene cluster 
ranking. The SVM-RCE method differs from related classification methods in that it first groups genes into cor-
related gene clusters by K-means and then evaluates the contributions of each of those clusters to the classifica-
tion task by SVM. One can think of this approach as a search for those significant clusters of gene which have 
the most pronounced effect on enhancing the performance of the classifier. See Figure 4(a) that illustrates the 
procedure of SVM-RCE. Moreover, Lin-Kai [40] propose an improved method of SVM-RCE called ISVM-RCE. 
ISVM-RCE eliminates genes within the clusters instead of removing a cluster of genes when the number of 
clusters is small. Six data sets are used to test the performance of ISVM-RCE and compared their performances 
with SVM-RCE and linear-discriminant-analysis-based RFE (LDA-RFE). The results show that ISVM-RCE  
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(a)                                                  (b) 

Figure 4. (a) Recursive cluster elimination (RCE) procedure with SVM; (b) Recursive feature elimination (RFE) procedure 
with SVM.                                                                                                  
 
greatly reduces the time cost of SVM-RCE, meanwhile obtains comparable classification performance as 
SVM-RCE, while LDA-RFE is not stable. 

Recently, Grate [41] has described a technique for discovering small sets of genes (3 or less). The technique is 
based on brute force approach of exhaustive search through all genes, gene pairs and some cases triple of genes. 
The combination is analyzed with classification method looking for those combinations that form training er-
ror-free classifiers. 

Robustness of biomarkers is an important issue, as it may greatly influence subsequent biological validations. 
In addition, a more robust set of markers may strengthen the confidence of an expert in the results of a selection 
method. Abeel [42] has proposed a general framework for the analysis of the robustness of a biomarker selection 
algorithm. The framework is based on ensemble feature selection, where multiple feature selections are com-
bined in order to increase the robustness of the final set of selected features. The proposed methodology is eva-
luated on four microarray datasets showing increases of up to almost 30% in robustness of the selected bio-
markers, along with an improvement of about 15% in classification performance. A different approach to deal 
with inconsistent cancer biomarkers due to bioinformatics artifacts, was proposed by [43]. The approach is 
based on using multiple data sets from microarrays, mass spectrometry, protein sequences, and other biological 
knowledge in order to improve the reliability of cancer biomarkers. The study presents a novel Bayesian net-
work (BN) model which integrates and crosses-annotates multiple data sets related to prostate cancer. The com-
putational results show that the method is able to find biologically relevant biomarkers with highest reliability 

]44[ . 
Some data is composed from multiple category or classes. For such a data a special methods of biomarker se-

lection is required. [45] has proposed classification method is based on two schemes: error-correcting output 
coding (ECOC) and pairwise coupling (PWC). The biomarker pattern for distinguishing each disease category 
from another one is achieved by the development of an extended Markov blanket (EMB) feature selection me-
thod. 

The study of [46] demonstrates that the machine learning approach can be used to detect a small subset of 
biomarker genes from high dimensional datasets and generate a classifier for multiple classes. A multiclass 
support vector machine (MC-SVM) method and an unsupervised K-mean clustering method were applied to in-
dependently refine the classifier, producing a smaller subset of 39 and 30 classifier genes, separately, with 11 
common genes being potential biomarkers.  

Yousef et al. [47] developed a new algorithm called recursive network elimination (RNE) with SVM. The 
main idea is to integrate network information with recursive feature elimination based on SVM. First, filter one 
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thousand genes selected by t-test from training set so that only genes that map to a gene network database re-
main. Then to the remaining genes the gene expression network analysis tool (GXNA) [48] is applied to form n 
clusters of genes that are highly connected in the network. Using these clusters linear SVM is used to classify 
the samples and a weight is assigned to each cluster based on its significance to the classification. The clusters 
with less information are removed while retaining the remainder for the next classification step. This process is 
repeated until an optimal classification result is attained. 

5. A Comparative Performance  
Pirooznia, M. et al. [49] conducted a study to compare the performance (with cross validation) of different ma-
chine learning algorithm such as SVM, RBF Neural Nets, MLP Neural Nets, Bayesian, Decision Tree and Ran-
dom Forrest methods. Additionally, the efficiency of the feature selection methods including support vector 
machine recursive feature elimination was compared. The data set consists from eight different binary (two class) 
microarray datasets. The performance was very well and in average higher than 90%. As expected, this study 
shows that in most cases the accuracy is improved with feature selection. Additionally, this study reports about 
stability of the top 50, 100, 200 genes with SVM-RFE. Actually those genes will be serving later as a biomarker 
for diagnostic diseases. 

Yousef et al. [39] compare the performance of SVM-RCE against the popular SVM-RFE method to reported 
in most cases that SVM-RCE is with better results as in average of 6 datasets is 96% while SVM-RFE with 92% 
accuracy. 

6. Conclusions 
In this review, we proposed many computational approaches which are critical for mining high-dimensional data 
in order to effectively discover biomarkers. Best data mining approach would to integrate different approaches 
to arrive at an effective algorithm; however most of the suggested methods ignore existing biological knowledge 
and treat all the genes equally. Information about gene networks or pathways should be incorporated into a clas-
sifier to improve both the predictive performance and interpretability of the resulting biomarker genes as sug-
gested by [47] and [50]. 

Moreover, we suggest developing more algorithms that incorporate biological knowledge, extracted from ex-
isting database with the procedure of feature selection to have more accurate biological results.  
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