[1]
|
Hill, A.V. (1950) The Dimensions of Animals and Their Muscular Dynamics. Science Progress, 38, 209-230.
|
[2]
|
Lindstedt, S.L., Trude, E.R., Paul, K. and Paul, C.L. (2002) Do Muscle Function as Adaptable Locomotor Springs? Journal of Experimental Biology, 205, 2221-2216.
|
[3]
|
Lichtwark, G.A. and Wilson, A.M. (2005) Effects of Series Elasticity and Activation Conditions on Muscle Power Output and Efficiency. Journal of Experimental Biology, 208, 2845-2853. http://dx.doi.org/10.1242/jeb.01710
|
[4]
|
Squire, J.M. (1997) Architecture and Function in the Muscle Sarcomere. Current Opinion in Structural Biology, 7, 247-257. http://dx.doi.org/10.1016/S0959-440X(97)80033-4
|
[5]
|
Russell, B., Motlagh, D. and Ashley, W.W. (2000) Form Follows Function: How Muscle Shape Is Regulated by Work. Journal of Applied Physiology, 88, 1127-1132. http://www.jappl.org/content/88/3/1127.full
|
[6]
|
Dickinson, M.H., Farley, C.T., Full, J.R., Koehl, M.A.R., Kram, R. and Lehman, S. (2000) How Animals Move: An Integrative View. Science, 288, 100-106. http://dx.doi.org/10.1126/science.288.5463.100
|
[7]
|
Rome, L.C. (2006) Design and Function of Superfast Muscles: New Insights into the Physiology of Skeletal Muscle. Annual Review of Physiology, 68, 193-221. http://dx.doi.org/10.1146/annurev.physiol.68.040104.105418
|
[8]
|
Medler, S. and Hulme, K. (2009) Frequency-Dependent Power Output and Skeletal Muscle Design. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152, 407-417. http://dx.doi.org/10.1016/j.cbpa.2008.11.021
|
[9]
|
Jontes, J.D. (1995) Theories of Muscle Contraction. Journal of Structural Biology, 115, 119-143. http://dx.doi.org/10.1006/jsbi.1995.1037
|
[10]
|
Cole van den, G.K., Bogert, A.J., Herzog, W. and Gerritsen, K.G.M. (1996) Modelling of Force Production in Skeletal Muscle Undergoing Stretch. Journal of Biomechanics, 29, 1091-1104. http://www.ingentaconnect.com/content/els/00219290/1996/00000029/00000008/art00005
|
[11]
|
Alexander, R.McN. (1977) Allometry of the Limbs of Antelopes (Bovidae). Journal of Zoology (London), 183, 125-146. http://dx.doi.org/10.1111/j.1469-7998.1977.tb04177.x
|
[12]
|
Forcinito, M., Epstein, M. and Herzog, W. (1998) Can a Rheological Muscle Model Predict Force Depression/Enhancement? Journal of Biomechanics, 31, 1093-1099. http://dx.doi.org/10.1016/S0021-9290(98)00132-8
|
[13]
|
Kokshenev, V.B. (2008) A Force-Similarity Model of the Activated Muscle Is Able to Predict Primary Locomotor Functions. Journal of Biomechanics, 41, 912-915. http://dx.doi.org/10.1016/j.jbiomech.2007.11.005
|
[14]
|
Jenkyn, T.R., Koopman, B., Huijing, P., Lieber, R.L. and Kaufman, K.R. (2002) Finite Element Model of Intramuscular Pressure during Isometric Contraction of Skeletal Muscle. Physics in Medicine and Biology, 47, 4043-4061. http://dx.doi.org/10.1088/0031-9155/47/22/309
|
[15]
|
Marra, S.P., Ramesh, K.T. and Douglas, A.S. (2003) Characterization and Modeling of Compliant Active Materials. Journal of the Mechanics and Physics of Solids, 51, 1723-1743. http://dx.doi.org/10.1016/S0022-5096(03)00055-3
|
[16]
|
Skatulla, S., Arockiarajan, A. and Sansour, C. (2009) A Nonlinear Generalized Continuum Approach for Electro-Elasticity Including Scale Effects. Journal of Mechanics and Physics of Solids, 57, 137-160. http://dx.doi.org/10.1016/j.jmps.2008.09.014
|
[17]
|
Dumont, E.R., Grosse, I.R. and Slater, G.J. (2009) Requirements for Comparing the Performance of Finite Element Models of Biological Structures. Journal of Theoretical Biology, 256, 96-103. http://dx.doi.org/10.1016/j.jtbi.2008.08.017
|
[18]
|
McMahon, T.A. (1973) Size and Shape in Biology. Science, 179, 1201-1204. http://dx.doi.org/10.1126/science.179.4079.1201
|
[19]
|
McMahon, T.A. (1975) Using Body Size to Understand the Structural Design of Animals: Quadrupedal Locomotion. Journal of Applied Physiology, 39, 619-627.
|
[20]
|
Kokshenev, V.B. (2003) Observation of Mammalian Similarity through Allometric Scaling Laws. Physica A, 322, 491-505. http://dx.doi.org/10.1016/S0378-4371(02)01923-4
|
[21]
|
Kokshenev, V.B. and Christiansen, P. (2010) Salient Features in Locomotion of Proboscideans Revealed via the Differential Scaling of Limb Long Bones. Biological Journal of Linnean Society, 100, 16-29. http://dx.doi.org/10.1111/j.1095-8312.2010.01415.x
|
[22]
|
Kokshenev, V.B. and Christiansen, P. (2011) Evolution of Locomotor Trends in Extinct Terrestrial Giants Affected by Body Mass. In: Klika, V., Ed., Theoretical Biomechanics, InTech, Croatia, 49-74. http://cdn.intechweb.org/pdfs/22186.pdf
|
[23]
|
Bejan, A. and Marden, J.H. (2006) Unifying Constructal Theory for Scale Effects in Running, Swimming and Flying. Journal of Experimental Biology, 209, 238-248. http://dx.doi.org/10.1242/jeb.01974
|
[24]
|
Kokshenev, V.B. (2011) Physical Insights into Dynamic Similarity in Animal Locomotion. I. Theoretical Principles and Concepts; II. Observation of Continuous Similarity States. In: Klika, V., Ed., Theoretical Biomechanics, InTech, Croatia, 267-302. http://www.intechopen.com/download/get/type/pdfs/id/22195
|
[25]
|
Alexander, R.McN. (1997) Optimum Muscle Design for Oscillatory Movements. Journal of Theoretical Biology, 184, 253-259. http://dx.doi.org/10.1006/jtbi.1996.0271
|
[26]
|
Pollock, C.M. and Shadwick, R.E. (1994) Allometry of Muscle, Tendon, and Elastic Energy-Storage Capacity in Mammals. American Journal of Physiology, 266, R1022-R1031.
|
[27]
|
Bennett, M.B. (1996) Allometry of the Leg Muscles in Birds. Journal of Zoology (London), 238, 435-443. http://dx.doi.org/10.1111/j.1469-7998.1996.tb05404.x
|
[28]
|
Biewener, A.A., Konieczynski, D.D. and Baudinette, R.V. (1998) In Vivo Muscle Force-Length Behavior during Steady-Speed Hopping in Tammar Wallabies. Journal of Experimental Biology, 201, 1681-1694.
|
[29]
|
Biewener, A.A. (2005) Biomechanical Consequences of Scaling. Journal of Experimental Biology, 208, 1665-1676. http://dx.doi.org/10.1242/jeb.01520
|
[30]
|
Kokshenev, V.B. (2007) New Insights into Long-Bone Biomechanics: Are Limb Safety Factors Invariable across Mammalian Species? Journal of Biomechanics, 40, 2911-2918. http://dx.doi.org/10.1016/j.jbiomech.2007.03.007
|
[31]
|
Roberts, T.J., Marsh, R.I., Weyand, P.G. and Taylor, C.R. (1997) Muscular Force in Running Turkey: The Economy of Minimizing Work. Science, 275, 1113-1115. http://dx.doi.org/10.1126/science.275.5303.1113
|
[32]
|
Rome, L.C. (1997) Testing a Muscle’s Design. American Scientist, 85, 356-363.
|
[33]
|
Josephson, R.K. (1999) Dissecting Muscle Power Output. Journal of Experimental Biology, 202, 3369-3375.
|
[34]
|
Ahlborn, B.K., Blake, R.W. and Megill, W.M. (2006) Frequency Tuning in Animal Locomotion. Zoology, 109, 43-53. http://dx.doi.org/10.1016/j.zool.2005.11.001
|
[35]
|
Forcinito, M., Epstein, M. and Herzog, W. (1997) Theoretical Considerations on Myofibril Stiffness. Biophysical Journal, 72, 1278-1286. http://dx.doi.org/10.1016/S0006-3495(97)78774-5
|
[36]
|
Robinson, J.M., Wang, Y., Kerrick, W.G.L., Kawai, R. and Cheung, H.C. (2002) Activation of Striated Muscle: Nearest-Neighbor Regulatory-Unit and Cross-Bridge Influence on Myofilament Kinetics. Journal of Molecular Biology, 322, 1065-1088. http://dx.doi.org/10.1016/S0022-2836(02)00855-0
|
[37]
|
Landau, L.D. and Lifshitz, E.M. (1989) Theory of Elasticity. Pergamon Press, London.
|
[38]
|
Kokshenev, V.B. (2010) Key Principle of the Efficient Running, Swimming, and Flying. Europhysics Letters, 90, 48005-p1-p5. http://dx.doi.org/10.1209/0295-5075/90/48005
|
[39]
|
Kent, G.C. (1987) Comparative Anatomy of the Vertebrates. Wm. C. Brown Publishers, Dubuque.
|
[40]
|
Rome, L.C., Runke, R.P., Alexander, R.M., Lutz, G., Aldridge, H., Scott, F. and Freadman, M. (1988) Why Animals Have Different Fibre Types. Nature, 335, 824-827. http://dx.doi.org/10.1038/335824a0
|
[41]
|
Farley, C.T., Glasheen, J. and McMahon, T.A. (1993) Running Springs: Speed and Animal Size. Journal of Experimental Biology, 185, 71-86.
|
[42]
|
Bejan, A. and Marden, J.H. (2006) Unifying Constructal Theory for Scale Effects in Running, Swimming and Flying. Journal of Experimental Biology, 209, 238-248.
|
[43]
|
Rome, L.C., Sosnicki, A.A. and Goble, D.O. (1990) Maximum Velocity of Shortening of Three Fibre Types from Horse Soleus Muscle: Implications for Scaling with Body Size. Journal of Physiology, 431, 173-185.
|
[44]
|
Marden, J.H. and Allen, L.R. (2002) Molecules, Muscles, and Machines: Universal Performance Characteristics of Motors. Proceedings of the National Academy of Sciences of the United States of America, 99, 4161-4166. http://dx.doi.org/10.1073/pnas.022052899
|
[45]
|
Daley, M.A. and Biewener, A.A. (2003) Muscle Force-Length Dynamics during Level versus Incline Locomotion: A Comparison of in Vivo Performance of Two Guinea Fowl Ankle Extensors. Journal of Experimental Biology, 206, 2941-2958. http://dx.doi.org/10.1242/jeb.00503
|
[46]
|
Davis, J., Kaufman, K.R. and Lieber, R.L. (2003) Correlation between Active and Passive Isometric Stress and Intra-muscular Pressure in the Isolated Rabbit Tibialis Anterior Muscle. Journal of Biomechanics, 36, 505-512. http://dx.doi.org/10.1016/S0021-9290(02)00430-X
|
[47]
|
Maloiy, G.M.O., Alexander, R.McN., Njau, R. and Jayes, A.S. (1979) Allometry of Legs of Running Birds. Journal of Zoology (London), 187, 161-167. http://dx.doi.org/10.1111/j.1469-7998.1979.tb03940.x
|
[48]
|
Medler, S. (2002) Comparative Trends in Shortening Velocity and Force Production in Skeletal Muscles. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 283, R368-R378.
|
[49]
|
Seow, C.Y. and Ford, L.E. (1991) Shortening Velocity and Power Output of Skinned Muscle Fibres from Mammals Having a 25,000-Fold Range of Body Mass. Journal of General Physiology, 97, 541-560. http://dx.doi.org/10.1085/jgp.97.3.541
|
[50]
|
Schilder, J.R. and Marden, J.H. (2004) A Hierarchical Analysis of the Scaling of Force and Power Production by Dragonfly Flight Motors. Journal of Experimental Biology, 207, 767-776. http://dx.doi.org/10.1242/jeb.00817
|
[51]
|
Mendez, J. and Keys, A. (1960) Density and Composition of Mammalian Muscle. Metabolism, 9, 184-188.
|