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Abstract 
Muscles show a surprisingly large variety of functions when they mechanically respond to differ-
ent environmental requests. However, the in vivo workloop studies distinguish well only four pat-
terns of skeletal muscles, producing positive, negative, almost zero and zero net works, that quali-
fies them respectively as motors, brakes, struts, and springs. While much effort of comparative bi-
ologists has been done in searching for muscle design patterns, no fundamental concepts under-
lying such four primary patterns were established. In this interdisciplinary study, continuum me-
chanics is applied to the problem of muscle structure in relation to function. The known ability of 
a powering muscle as whole to be tuned via natural (resonant) frequency to the efficient locomo-
tion is now modeled through the non-linear elastic muscle moduli, controlling both the contrac-
tion frequency and velocity. When incorporated in activated skeletal and cardiac (striated) mus-
cles via the mechanical similarity between loaded and reaction forces, further exploration of elas-
tic force patterns (borrowed from solid state physics) yields an explicit rationalization for cur-
rently known locomotor muscle patterns. Besides explanation of the origin of allometric expo-
nents derived for leg muscles in animals adapted to fast running and wing muscles in flying birds, 
the skeletal and cardiac muscles are patterned through the primary and secondary high power ac-
tivities. Further applications are expected to be useful in designing of artificial muscles and mod-
eling living and extinct animals. 
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1. Introduction 
The mechanical role of muscles varies widely with their architecture and activation conditions. Striated (skeletal 
and cardiac) muscles are diverse in their contractive interspecific and intraspecific functional properties ob-
served among and within animal species, nevertheless, in all cases “the smaller muscles and muscles of smaller 
animals are quicker” [1]. After Hill [1] who first noted this generic feature of the design of skeletal muscles, 
their physiological adaptation, resulting in beneficial changes in muscle function, has been recognized by a 
number of investigators. For example, it was learned that long-fibre muscles commonly contract at over larger 
length ranges and relatively higher velocities producing the greatest muscle forces the lowest relative energetic 
costs [2]. Muscles having shorter fibres expose smaller length change, but their cost of force generation is rela-
tively less, e.g. [3]. Searching for determinants of evolution of shape, size, and force output of cardiac and ske-
letal muscle, a little is known about the regulation of directional processes of mass distribution [4] [5]. Although 
skeletal muscles grow in length as the bones grow, most studies only involve force increasing with respect to 
cross-sectional area. Following the idea that the muscle force production function is a critical evolutionary de-
terminant [5], I develop a physical study of the muscle form adaptation to a certain primary activity with growth 
of size (length and cross-sectional area) under evident condition of the preservation of muscle shape. 

When designing architecture of the striated muscle built from repeating units (fibres and sarcomeres) at least 
three distinct muscle activities should be distinguished [5]: the concentric contraction defined as the production 
of active tension while the muscle is shortening and performing positive work, the eccentric contraction defined 
as contraction during lengthening performing negative work in a controlled fashion, and the isometric contrac-
tion when the muscle force output is produced without changing of length and performing almost zero or zero 
net work. The corresponding mechanical work patterns called by Russel et al. [5] as “concentric work” and 
“eccentric work” (that might be extended here by “isometric work”) were carefully studied via in vivo mea-
surements of length-force cycling (workloops) of individual skeletal muscles in active animals. Presented (in 
Figure 3 in [6]) by the pectoralis in flying birds, leg extensors in running cockroaches, gastrocnemius in the 
level running turkey, and intrinsic wing muscles in insects, the corresponding muscle locomotor patterns are 
known as the motor, brake, strut and spring muscles [6]. 

The seminal research by Hill [1] on dynamics of electrically stimulated isolated muscles was restricted to a 
single isotonic shortening. The studies of the relevant motor function resulted in famous force-inverse-velocity 
master curve presenting the major dynamic constraint of all real (slow-fibre, fast-fibre, and superfast) muscles [7] 
and computationally modeled muscles, e.g. [8]. Besides, other two fundamental rules of muscle dynamics were 
noted by Hill [1]. Examining hovering humming and sparrow birds, he recognized that the “frequencies of 
wings are roughly in inverse proportion to the cube roots of the weights, i.e. to linear size”. Moreover, because 
the linear proportionality between the stroke period T  and body length L  was equally established in in vivo 
and electrically stimulated isolated muscles, the corresponding frequency-inverse-length scaling rule 

1 1 1
m mT L L− − −∝ 

, shown for a given muscle m , is likely more universal than previously appreciated and asso-
ciated with the nervous control. Second velocity-inverse-length Hill’s constraint states that “the intrinsic speed 
of muscle has to vary inversely to length”, i.e. 1

m mV L−∝ . Both Hill’s scaling rules still remain a challenge to 
viscoelastic models of transient-state muscle mechanics and other theories of muscle contraction, e.g. [9]. 

The earliest theories of muscle motor function supposed muscle to be an elastic body which, when stimulated, 
was converted in an active state containing elastic energy causing the muscle to shorten. Such elastic-energy 
theories failed to explain mechanisms of the force production in terms of viscoelastic characteristics. To a cer-
tain extent, poor experimental approaches providing often conflicting clues to muscle structure in relation to 
function may explain a little progress in understanding of contractile properties of a muscle [4] [9]. Moreover, 
physiological muscle properties accounted for macroscopic theories, i.e. (developed at macroscopic scale of 
consideration of muscle contractions, are primarily focused on the reproduction of force-velocity curve [9]. Be-
sides, the existing phenomenological frameworks such as Hill-type muscle models only mimic the proper me-
chanical characteristics of muscles by means of passive viscoelastic springs attached to muscle contractive ele-
ment in series [3] [10] [11] or in parallel [12] and recruited when muscle is activated. Such kind of models ig-
nores the fact that the force production is followed by the process of force transmission throughout the same 
muscle organ. In other words, Hill-type muscle models employ Hill’s principal constraints of muscle dynamics, 
not being able to explain them. In line with the experimental evidences of the adaptive ability of skeletal muscle 
to exchange elastic strain energy during force production [2], it was communicated on the force-similarity ap-
proach to modeling of the four primary muscle patterns via the adaptive muscle elasticity [13]. 
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In the present paper, I develop an integrative theoretical approach to the problem of active forces, mechani-
cally adapted design, and contractive linear and non-linear dynamics of striated muscles. Instead of Hill-type 
modeling of in vitro motor function (e.g. [3]), brake function (e.g. [2] [12]), and strut function (e.g. [14]), or 
study of muscle design by means of simulation of phenomenological force-length and/or force-velocity con-
straints [8], the powerful method of continuum mechanics generally providing macroscopic characterization and 
modeling of soft tissues (e.g. [15] [16]) is employed. As a further exploration of the elastic force patterns, I pro-
pose a self-consistent depiction of the three dynamically-distinct point characteristics of typical in vivo force- 
length loops of the naturally activated skeletal muscles. Unlike the earliest elastic theories based on minimiza-
tion of energy, I develop the physical concept of similarity between the force output and reaction active elastic 
forces that permits one to avoid the molecular-scale details of the muscle activation process. The theory is vali-
dated by a comparison to phenomenological scaling rules including both mentioned Hill’s dynamic constraints 
and therefore may be hopefully helpful in designing artificial muscles [15] and modeling living and extinct or-
ganisms [17]. 

2. Theory 
2.1. Theoretical Background 
2.1.1. McMahon’s Scaling to Body Weight 
The engineering models by McMahon [18] [19] develop previous Hill’s approach to the problem of scaling 
quantities of animal performance to body weight W Mg= . Using Hill’s geometric similarity models [1] [19] 
equally applied to animal body, long bone, or individual muscle, each one was approximated by a cylinder of 
longitudinal length L  and cross-sectional area A  (or diameter D A ). Moreover, the assumption on the 
weight-invariance of for the tissue density was adopted, namely 

0.tiss
M W
AL

ρ = ∝                                    (1) 

In mammalian long-bone allometry, this invariant was verified and observed with a high precision [20]. Me-
chanical models of bending bones and shortening muscles were introduced by McMahon via the weight-inva- 
riant elastic modulus tissE , tissue stress tissσ  and strain tissε , namely  

0 , with and .tiss
tiss tiss tiss

tiss

F LE W
A L

σ
σ ε

ε
∆ ∆

= ∝ = =                    (2) 

Here ( )0L L L∆ = −  is the length change accompanied by the force change ( )0F F F∆ = −  counted off from 
the resting length 0L . 

While searching for functional mechanical patterns of biological systems determined by maximal forces using 
Equation (1) and Equation (2), the maximal-amplitude stress/strain scaling relations 

( ) ( ) ( )max max max1 3 1 4 1 5, , and ,geom elast statW W Wσ σ σ∝ ∝ ∝                     (3) 

could be readily derived from McMahon’s geometric (isometric elastic stress), elastic (buckling elastic stress) 
and static (bending elastic stress) similarity models distinguished through McMahon’s scaling relations 

2 3 1 2, , and .geom elast statL D L D L D∝ ∝
                      (4) 

Instead, the maximum stress and strain 
( ) ( )max max 0 ,tiss tiss Wσ ε∝ ∝                              (5) 

were postulated (in Table 4 in [19]) thereby groundlessness extending McMahon’s exact result for the mean 
stress ( ) 0mean

elast Wσ ∝ , obtained within the static stress similarity model (see Figure 1 in [19]). The improved 
self-consistent maximal stresses shown in Equation (3) follow straightforwardly from McMahon’s cross-sec- 
tional areas 

( ) ( ) ( )2 3 3 4 4 5, , and ,isom buck bend
geom elast staticA W A W A W∝ ∝ ∝                    (6) 

when applied to Equation (2), along with McMahon’s idea on the dominating role of gravitational forces in 
bones, muscles, and bodies, i.e. b mF gM gM W∆    . 
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The patterns of long bones are generally driven by the peak muscle forces, but not by gravity, as repeatedly 
noted by many authors, proven [20] and exemplified by all mammals as whole [21]. Nevertheless, one amazing 
case of the experimental evidence of McMahon’s elastic similarity is due to limb bones in African elephants 
which, in contrast to Asian elephants, are most likely adapted for axial bone compression, influenced by gravita-
tional reaction forces [21]. 

Although the evolution of locomotor trends of terrestrial giants are likely driven by body weight [22], the idea 
on the origin of locomotion patterns of animals (running, flying, and swimming) based on minimization of use-
ful energy in the gravitational field [23], was also confronted with the new idea of maximum body efficiency in 
the muscular field [24]. 

2.1.2. Muscle Shape and Structure 
After Alexander [25], the physiologic cross-sectional area 0mA  (PCSA) of the isolated skeletal muscle m  of 
mass mM  composed of N  bundles of masses im  was commonly estimated, e.g. [26], with the help of the 
cylinder-geometry relation i i m iA m Lρ= , where mρ  is the muscle density and iL  is directly measured mus-
cle fibre length. The spindle-like shape of the muscle as whole organ was therefore determined by the muscle 
PCSA, namely  

0
1 1 10 0

1 1since and , hence ,
N N N

m i
m i m i

i i im m m m i

M m
A A M m

L L M Lρ= = =

= = = =∑ ∑ ∑               (7) 

As shown [25] [26], the sum of areas of the muscle and the muscle length 0mL  of the parallel-linked contrac-
tible subunits is described statistically by the length-unversed sum weighed by masses. Such a simplified 
(coarse-grained) characterization of the muscle structure generally ignores the arrangement of muscle fibres rel-
ative to generated force axis, distinguished by pinnate angles. 

In scaling models, the evolution of the muscle structures across different-sized animals of body mass M  is 
observed statistically via allometric exponents ma , ml , and mα  determined by common rules [25] [27] [29]:  

1
0 0, , and ,m m ma l

m m m m mA M L M M M α+∝ ∝ ∝                        (8) 

where the muscle mass index mα  plays the same role as Prangel’s index β  in bones, as noted in [30]. When 
the muscle-density invariance employed implicitly in Equation (7) and specified in Equation (1) is applied to 
different skeletal muscles, the muscle shape approximated by cylinder geometry is also preserved. Consequently, 
the muscle functional volume 

0 0
0 0 0

0

, with ,m
m m m m m m m

m

M
A L A L M Mρ ρ

ρ
= = = ∝                      (9) 

holding in all muscle activities, plays the role of the muscle mechanical invariant. This statement is ensured by 
the functional variation of density m mρ ρ∆  not exceeding 5% [28]. Hence, the function-independent mus-
cle-shape constraint [13] 

1m m ma l α+ = +                                   (10) 

straightforwardly follows from Equation (8) and Equation (9). Likewise the case of hindlimb mammalian bones 
of the mean structure ( ) ( )exp exp2 0.752b ba d= = , ( )exp 0.298bl = , and ( )exp 0.04β =  [20] [30], Equation (10) is also 
empirically observable in muscle allometry (see further analysis in Table 5). 

2.2. General Muscle Characterization 
2.2.1. Maximal Force and Stress 
Using the in vivo workloops, the muscle locomotor patterns can be generally specified regardless of details of 
activation-deactivation conditions. In Figure 1, the linear-slope characteristics 1mL  can be introduced in the 
force-length cycling by the length-point conditions: 2 1 3 0m m m mL L L L< < ≈ , for the motor function, 

2 1 3m m mL L L> > , for the brake function, and by 2 1 3 0m m m mL L L L≈  , for the strut function showing nearly 
isometric muscle contractions. 

Moreover, such a qualitative general characterization of the activated individual muscle m  of resting length 
0mL  can be rationalized on the basis of common two-point force-length description, namely 

( ) ( ) ( ) ( ) ( )exp max exp
2 2 1 1and ,musc m musc m musc m mF L F F F L F= = =                       (11) 
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Figure 1. The qualitative analysis of the in vivo muscle force-length data. 
The muscle motor function is presented by gastrocnemius powering during 
shortening in uphill running turkey (inset a, adapted from [31]). The lateral 
gastrocnemius and plantaris act as brake (inset b) and strut (inset c) in hop-
ping tammar wallabies [28]. The solid (and dashed) arrows indicate rasing 
(and decreasing) of the exerted force near its maximum magnitude maxF , dis-
tinguished by the turning point 2. The regions of the linear force-length do-
main are displayed by the force change 1mF∆  and length change 1mL∆ , es-
timated from point 1 as the starting datapoint of the force enhancement 1mF  
with length 1mL , achieved at the optimum contraction velocity optV  and 
frequency. Similar to cyclic pendulum, the activated muscle is expected to 
pass though point 3 with maximum contraction velocity maxV  at resting 
length 0mL , with moderate force 3mF . Inset d: The resulted intrinsic force 
generated by the powering shortening (motor) or lengthening (brake) muscle, 
exemplified by maxF , is due to a superposition of the production force output 

prodF  and elastic forces, reaction passive passF  and active actF  (see also 
text below Equation (16)).                                           

 
introduced by the maximum force ( )max

2mF  and the optimum muscle length [32] [33] 1mL . The instant dynamic 
length 1 1m m mL L L= ± ∆  is counted off from the characteristic point 1mL  via the optimum length change 1mL∆  
shown in Equation (11) and Figure 1 for all locomotory functions. 

First, the linearization of the in vivo muscle force-length curve allows one to determine the trial peak stress 
and strain by 

( )
( )

( )
( )

( )
max max

max max max1
1 2 1

2 2

and , with .musc m
musc musc m m m

m m

F L
L L L

A L
σ ε

∆
= = ∆ = −                  (12) 

The corresponding force change ( )max
muscF∆  observed near the optimum force ( )max

1mF  provides 
( ) ( ) ( ) ( ) ( ) ( )max max max max max

1 1 1musc musc m musc m musc mF F L F F K L= + ∆ = + ∆                       (13) 

that in turn determinates effective muscle stiffness 2mK  and effective modulus 2mE , namely 

( )

( )

( )

( )

( )

( )
( ) ( )

( )

( )

max max max
max max max2

2 2max max maxmax 211

d
, and ,

d
musc musc musc m musc

musc m musc musc m
m mm musc muscF m

F F F A
K K E E E

L LL F
σ
ε

∆ ∆
≡ = ≈ = ≡ =

∆
      (14) 
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following from Equation (12) and Equation (13). 

2.2.2. Active Stiffness and Resonant Muscle Mechanics 
Secondly, treating the maximum-force crossover state as the generic transient-neutral state [30], the resonant 
frequency ( )max 1

21 musc mT T −=  related to point 2 in Figure 1 and associated with maximum efficiency of muscle 
cycling, e.g. [34], can also be introduced as natural frequency [19] [34], namely 

( ) ( )

( )

( )1 2 maxmax max
1 2

2 max
0 2 2

12π .muscm musc musc
m

m m m mmusc

EK E F
T

M L LFρ
−

 ∆
∝  

 
                    (15) 

One can see that Equation (15) yields first Hill’s frequency-inverse-length constraint discussed in Introduction. 
However, the following three observation conditions of this constraint are required: 1) the preservation of dy-
namic functional volume (see Equation (9)), 2) the weight-invariance of the elastic modulus ( )max

muscE , and 3) the 
validation of force similarity between the exerted force ( )max

muscF  and its change ( )max
muscF∆  (see Equation (13)). 

Therefore, the muscle force-similarity principle, implying a coexistence of all forces in biomechanically equiv-
alent states [30], can be formulated as 

.musc musc prod elast elastF F F F F≅ ∆ ≅ ≅ ≅ ∆                           (16) 

Here the active elastic force elastF∆  (shown schematically in the inset d (see Figure 1 as actF ) is also in-
cluded1. The total transient-state elastic force elastF  is the superposition of common passive elastic force passF  
provoked by external loads and active elastic force elastF∆  caused by the production force prodF . 

Given that the peak active muscle stress mσ  always exceeds the corresponding passive stress, e.g. [14], in 
further I focus on transient states in the fully activated muscle (restricted by points 1 and 2 in Figure 1) and de-
scribed by  

.elast m
m m

m m

F L
E

A L
σ

∆ ∆
= =                               (17) 

Unlike the trial peak stress in Equation (12), mσ  is the true intrinsic elastic stress in a certain, non-specified 
transient dynamic state. This reveals elastic force change near the maximum amplitude 

m
elast m m m m m

m

L
F F K L E A

L
∆

∆ ≡ ∆ = ∆ =                           (18) 

and in turn provides the corresponding active muscle stiffness 

.m
m m

m

A
K E

L
=                                     (19) 

The underlying mechanical sarcomere elastic stiffness sK  is related via the muscle-volume average, namely  

( ) 31 d ,m s m m
m m

K K r r
A L

= ∫                                 (20) 

originated from end-to-end intercellular overlapping [12] [35]. 
The muscle energy change 

2
2 m

m m m m m
m

L
U K L E A

L
∆

∆ ∆ ≅                               (21) 

stored or released during active-period contraction provides the mechanical cost of energy  

.m m
m m m

m m

U L
CU E A

L L
∆ ∆

= ≅
∆

                              (22) 

These relations demonstrate how the observable mechanical characteristics can be linked to the underlying 
muscle elastic forces using the force-similarity principle formulated in Equation (16). In turn, the contraction 

 

 

1The correspondence sign ≅  indicates that though the involved physical characteristics belong to the same mechanical state, they may dif-
fer in both physical and numerical parameters stipulating this state. For other notations see Appendix A. 
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velocity 

( ) ( ) ( )
0

d d1
d d

m

m

t m m m
m m

m mt t

L t L t L
V V t dt

t t t T
∆

=∆

   
= ≡ ≅   ∆    

∫                     (23) 

is defined by the instant velocity ( )mV t  averaged over activation time mt∆ . 

2.2.3. Fast and Slow Activated Muscles 
According to the most general classification of diverse muscles, three types are conventionally distinguished: 
red (slow fibre) muscles, white (fast fibre) muscles, and intermediate type, mixed fibre muscles. Although col-
lective mechanisms of muscle contractions are poor understood, e.g. [36], physically, two limiting situations of 
the dynamic accommodation of local forces generated by cross bridge attachments can be generally rationalized. 
As schematically drawn in the inset d in Figure 1 for an activated muscle, the dynamic process of equilibration 
between the production intrinsic forces and external loads (not shown) is followed by the spatiotemporal relaxa-
tion of elastic forces. For the simplest case of slow muscles, the dynamic equilibration occurs via the slow chan-
nel of relaxation, supposedly common for both active, ( )slow

prodF , and passive elastic forces. Since passive forces 
in solids are short of range [37], both the forces are proportional to muscle surface. In contrast, it is plausible to 
adopt that in fast muscles the fast-twitch fibres transmit the locally generated forces in all directions, i.e. along 
and across fibres, resulting in the overall maximum force output ( )fast

prodF  to be linear with dynamic muscle vo-
lume. Basing on such a generalized physical picture, a function-independent and regime-independent characte-
rization of the force production function, namely  

( ) ( )and , with 1,2, and 3,fast slow
prod rm rm prod rmF A L F A r∝ ∝ =                    (24) 

is proposed through the force-size scaling rules, for all three distinct states shown in Figure 1, hereafter distin-
guished by symbol r. 

The linear-displacement regime with L L∆   widely adopted among biologists for overall dynamic charac-
terization, is discussed in Equation (2) that results in the weight-independent strain, that may shed light on stress 
postulated in Equation (5). The corresponding optimum-velocity regime 1r = , attributed to the instant 
length-independent elastic strains, ( ) 0

3
opt

m m m m mL L L Lε = − ∝  with mL  lying between 1mL  and 3 0m mL L≈ , is 
now introduced by scaling equations 

( ) ( ) ( ) ( )1 0
1 1 1, , with ,fast opt slow opt
m fast m m slow m m mE E L E E L L L= ∝ = ∝ ∆                  (25) 

characteristic of the fast and slow muscles. Such a muscle description follows from the principle of similarity 
(see Equation (16)) between the active elastic force ( )

1 1 1 1
opt

m elast m m mF F E A ε∆ = ∆ =  (see Equation (18)) and cor-
responding production force (see Equation (24)). The optimum-force and optimum-velocity muscle mechanics is 
rationalized below in Table 1 and then tested by empirical data. 

Likewise, the bilinear-displacement moderate-velocity regime 2r =  introduced by the dynamic length 
change 2

2 1m m m mL L L L∆ = − ∝ , with mL  lying between mL2  and 1mL , and the maximum active elastic force 
( ) ( )max max

2 2 2 2m elast m m mF F E A ε∆ = ∆ =  (see Equation (18)) results in the maximal elastic moduli 
( ) ( ) ( ) ( )max max0 1 2

2 2 2, , with ,fast slow
fast m m slow m m m mE E L E E L L L−= ∝ = ∝ ∆ ∝               (26) 

adjusted with the muscle production function on the basis of force similarity principle. Finally, the trilinear 
high-velocity regime 3r =  is suggested by the moderate elastic muscle force determined by 

( ) ( ) ( ) ( )1 2 3
3 3 3, , with .mod fast mod slow

fast m m slow m m m mE E L E E L L L− −= ∝ = ∝ ∆ ∝              (27) 

This condition specifies point 3 in Figure 1, along with the underlying cubic-power muscle displacements 
3mL∆  scaled by dynamic mL  lying above or below the characteristic length 3mL  in any muscle acting as mo-

tor, brake or strut. 

2.3. Muscle Functions 
Likewise the naturally curved mammalian long bones biomechanically adapted to the maximum longitudinally 
bending [20] [30], the muscle motor function is assigned to locomotor muscles showing concentric positive 
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work exerted by elastic bending forces. Given that the elastic force patterns coincide for bending and torsion 
[30], both kinds of unpinnate and uni-pinnate skeletal muscles, having respectively close to zero and non-zero 
fixed pinnate angles, may be expected to be structured by the same motor function. The specific-function me-
chanical characterization is described in Appendix B and results are summarized in Table 2. 
 
Table 1. General mechanical characteristics of the striated muscles tuned to linear-displacement dynamic regime scaled to 
dynamic fibre length 1m mL L= . The mixed-fibre scaling dynamic exponents (shown in the last column) are modeled by the 
common means for the fast-muscle and slow-muscle exponents (established in the second and third columns), following 
from the rule mix fast slowF F F

; mA  and mL  are attributed to the stabilized dynamic muscle geometry constrained by 

muscle volume Equation (9).                                                                               

Optimum muscle characteristics, Equation Fast fibres Slow fibres Mixed fibres 

Optimum length change, 1mL∆ , Equation (25) mL  mL  mL  
Production force, 1mF∆ , Equation (16), Equation (18), Equation (25) m mA L  mA  

1 2
m mA L  

Optimum stiffness, 1 1 1 1m m m mK E A L= , Equation (19) mA  
1

m mA L−

 
1 2

m mA L−

 
Optimum elastic stress, 1 1 1m m mF Aσ = ∆ , Equation (17) mL  

0
mL  

1 2
mL  

Contraction frequency, 1
1 1 0 1m m m mT E Lρ−
 , Equation (15) 1 2

mL−

 
1

mL−

 
3 4

mL−

 
Optimum velocity, ( )

1
opt

m muscV V= , Equation (23) 1 2
mL  0

mL  
1 4
mL  

Optimum power, 1 1 1m m mP F V=  3 2
m mA L  mA  

3 4
m mA L  

 
Table 2. Scaling to mass of mechanical characteristics of muscles adapted to different locomotor functions. The allometric 
exponents related to animal's body mass (via Equation (8)) are presented in terms of muscle mass index mα . The powering 

individual muscles 1,2,3,m =  and 5 are tuned to the maximum-force bilinear dynamic regime 2r =  (described in Equa-
tion (26)) and the control muscle 4m =  acts in the linear regime 1r =  (Equation (25)). *)The data shown only for the 
fast-fibre muscles. Other data are equally applied to fast, slow and mixed-fibre muscles.                               
 

Muscle pattern, regime 
Equation 

Motor, r = 2 
Equation (37) 

Brake, r = 2 
Equation (41) 

Strut, r = 2 
Equation (43) 

Control, r = 1 
Equation (47) 

Pump, r = 2 
Equation (45) 

Force pattern, muscle 
Equation 

( )conc
motorF , m = 1  

Equation (35) 

( )eccen
brakeF , m = 2 

Equation (39) 

( )isom
strutF , m = 3 

Equation (42) 

( )sprin
contrF , m = 4 

Equation (46) 

( )card
pumpF , m = 5 

Equation (44) 

Maximum force, Equation (24) 11 α+  21 α+  31 α+  ( )4

2 1
3

α+  51 α+  

Muscle fibre length, Equation (8) ( )1

1 1
5

α+  ( )2

1 1
4

α+  0 ( )4

1 1
3

α+  ( )5

1 1
2

α+  

Cross-sectional area, Equation (8) ( )1

4 1
5

α+  ( )2

3 1
4

α+  31 α+  ( )4

2 1
3

α+  ( )5

1 1
2

α+  

Structure parameter, 1
m m ma lη −=  4 3 ∞  2 1 

Length change*), Equation (26) ( )1

2 1
5

α+  ( )2

1 1
2

α+  0 ( )4

1 1
3

α+  51 α+  

Maximum stress*), Equation (12) ( )1

1 1
5

α+  ( )2

1 1
4

α+  0 0 ( )5

1 1
2

α+  

Maximum stiffness*), Equation (19) ( )1

3 1
5

α+  ( )2

1 1
2

α+  31 α+  ( )4

1 1
3

α+  0 

Natural frequency*), Equation (15) ( )1

1 1
5

α− +  ( )2

1 1
4

α− +  0 ( )4

1 1
3

α− +  ( )5

1 1
2

α− +  

Energy change*), Equation (21) ( )1

7 1
5

α+  ( )2

3 1
2

α+  31 α+  41 α+  ( )52 1 α+  

Moderate velocity*), Equation (23) 0 0 0 0 0 
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3. Results 
Assumptions and Predictions 
The following assumptions are made regarding elastic striated muscles in fully activated states: 

1) The powering individual muscles considered at macroscopic scale are treated as regime-dependent homo-
geneous solid-like organs. Within the scope of continuum medium mechanics, the macroscopic coarse-grained 
description ignores details of heterogeneous microstructure, including those resulting in pinnate angles. 

2) When activated under different boundary loading conditions, the muscles do not undergo changes in shape 
and whole volume. The emerging muscular active-force fields [24] [38] follow the same patterns as passive 
elastic-force fields known in continuum medium mechanics of solids. 

3) The mechanical similarity between the extrinsic forces exerted by the muscle and intrinsic elastic reaction 
forces, established above as the observation condition, can provide dynamic similarity features (for contraction 
velocities and frequencies), which can be theoretically and experimentally observable, at least in biomechani-
cally equivalent states. 

4) The natural ability of the non-linear elastic tuning of fast and slow muscles [34] can be characterized by the 
regime-dependent elastic moduli sensitive to evolving dynamic observable characteristics, e.g. the muscle length 
change. 

One can deduce from Table 1, that the mechanical characterization of slow, fast and mixed muscles attributed 
to the linear-displacement regime ( )1r =  is shape-dependent. 

In Table 2, the scaling rules driving mass distribution in a given muscle m  are provided in terms of the 
muscle mass index mα . For example, the solution for the muscle-fibre length scaling exponent ( )1 5m ml α= +  
specified for the motor function ( )1m =  follows from the muscle scaling Equation (8) and muscle motor pat-
tern in Equation (37), both indicated in Table 2. 

In Table 3, the scaling rules shown in Table 2 are compared with those for the optimal-force state related to 
the exponents [ ]1 1,m ma l  and moderate-force state related to [ ]3 3,m ma l . The dynamic characteristics of dis-
tinct-velocity contractions are predicted in Table 4. 
 
Table 3. Locomotor functions predicted by dynamic structured for slow and fast striated muscles tuned to distinct dynamic 
regimes. The primary functions ( )2r =  are shown by bold exponents. The analysis of functional muscle structures made in 

terms of elastic-force patterns: the active-muscle optimum-velocity ( )1r = , moderate-velocity ( )2r = , and high-velocity 

( )3r =  dynamic regimes are described in the first column via the muscle elastic moduli rmE  (see Equations (25)-(27)) and 
specified by slow and fast force output (Equation (24)), shown in the second column. The third and next odd columns show 
the elastic force functional scaling in concentric, eccentric, isometric, and pump contractions. Unlike Table 2, the corres-
ponding solutions to scaling equations underlaid by the force similarity principle Equation (16) are shown for simplicity with 

0rmα = . Notation: nc  indicates non-conclusive solution.                                                 

 
Dyn. regimes Force Funct. Structure Funct. Structure Funct. Structure Funct. Structure 

1, 2,3r =  max
prodF ∝  conc

motorF ∝  ma  ml  eccen
brakeF ∝  ma  ml  isom

strutF ∝  ma  ml  card
pumpF ∝  ma  ml  

1 ( ) 0
1

slow
m mE L∝  mA  

3
12

m mA L−  
2
3

 1
3

 2 2
m mA L−  2

3
 1

3
 mA  nc  nc  2

mL  2
3

 1
3

 

2 ( )
1

fast
m mE L∝  m mA L  

3
2
mA  

2
3

 1
3

 2 1
m mA L−  2

3
 1

3
 m mA L  nc  nc  3

mL  2
3

 1
3

 

3 ( ) 1
2

slow
m mE L−∝  mA  

3
22

m mA L−  
4
5

 1
5

 2 3
m mA L−  3

4
 1

4
 1

m mL A−  1 0 1
mL  1

2
 1

2
 

4 ( ) 0
2

fast
m mE L∝  m mA L  

3
12

m mA L−  
4
5

 1
5

 2 2
m mA L−  3

4
 1

4
 mA  1 0 2

mL  1
2

 1
2

 

5 ( ) 2
3

slow
m mE L−∝  mA  

3
32

m mA L−  
6
7

 1
7

 2 4
m mA L−  4

5
 1

5
 2

m mL A−  1 0 0
mL   0 1 

6 ( ) 1
3

fast
m mE L−∝  m mA L  

3
22

m mA L−  
6
7

 1
7

 2 3
m mA L−  4

5
 1

5
 1

m mA L−  1 0 1
mL  0 1 
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Table 4. Dynamic characterization of the red (slow) and white (fast) striated muscles in the optimum-, moderate-, and max-
imum-velocity dynamic regimes 1,2r = , and 3 described in Table 3. Predictions are made on the basis of equations indi-
cated in the table generalized over different dynamic regimes.                                                    

Dynamic regime Optimum ( )1r =  Moderate ( )2r =  Maximum ( )3r =  

Muscle type slow fast slow fast slow fast 

Natural frequency, Equation (15), 1
rmT − ∝  1

mL−  1 2
mL−  3 2

mL−  1
mL−  2

mL−  3 2
mL−  

Contraction velocity, Equation (23), rmV ∝  0
mL  1 2

mL  1 2
mL−  0

mL  1
mL−  1 2

mL−  

 
Some consequences of the proposed muscle scaling dynamic theory are: 
1) The peak forces generated in all regimes scales as muscle volume or PCSA, respectively, in fast or slow 

muscles. 
2) A general, function-independent mechanical description of the striated muscle activated in the lin-

er-displacement regime is predicted for each type of muscles (Table 1). 
3) The muscle-type independent locomotor functions and related mechanical and dynamic characteristics of 

the striated muscle activated in the bilinear regime are predicted (Table 2). 
4) The muscle-type independent varied dynamic structures are predicted for all muscle regimes and functions 

(Table 3). 
5) The function-independent dynamic scaling characteristics are obtained in Table 4 for all type of muscles. 
In what follows, all theoretical findings are tested by available from the literature data. 

4. Analysis and Discussion 
Aiming to shed light on some important problems in the field of muscle dynamics, let me cite Louis Sullivan 
quoted in [5]: “What determines the shape, size, and force output of cardiac and skeletal muscle?”. Broadly, 
within the provided coarse-grained description of conservative striated muscles, the proposed theory suggests 
that the size-dependent peak elastic forces, emerging during the force production preserving muscle shape, are 
responsible for the muscle patterns observed via the functionally adapted structures. Moreover, the peak force 
output, which is described through the corresponding elastic force, is therefore determined by the muscle vo-
lume and cross-sectional area, respectively for white and red muscles, regardless of muscle functional speciali-
zation. 

4.1. Function against Structure 
4.1.1. General Muscle Characterization 
Being composed of bundles of muscle fibres and other contractible components (neural, vascular, and collagen-
ous reticulum), the striated muscle is thought of as a heterogeneous continuum medium transmitting the pro-
duced tension internally and externally, e.g. [39]. Primarily, I address the problem of mechanical design of 
striated muscle to a general, function-independent characterization of the individual muscle organ loaded by 
tension, reaction, and gravity through tendons, ligaments, and bones. My non-energetic approach is physically 
grounded by the existence of linear force-length regions (shown by the solid arrows in the workloops in Figure 
1) revealed in all in vivo workloops regardless of dynamic details of approaching to the peak exerted force 

( )max
muscF . Hence, the mechanical characterization of the maximum-force activated muscle arises from the muscle 

stiffness ( )max
mK  underlaid by sarcomere stiffness ( )max

sK  discussed in Equation (20). Consequently, all forces 
involved in muscle contraction following by active and passive elastic strains allow common mechanical de-
scription (shown in the inset d in Figure 1) not depending on their biochemical, inertial, or reaction origin. 

The analytical justification of Hill’s frequency-inverse-length constraint results from the analysis of Equation 
(15) that eventually requires the usage of the similarity between all intrinsic muscle forces, Equation (16). The 
constraint 1 1

m mT L− −∝  and other mechanical characteristics for slow muscles shown in Table 1 can be generally 
applied to steady-speed regimes of locomotion modes where all forces are generally equilibrated and controlled 
by slow-fibre muscles [40]. In the case of non-steady transient locomotion when fast-twitch fibres and nervous 
control are additionally requested [40], Hill’s first constraint transforms (by Equation (15) and Equation (25)) 
into a new one, ( )1 1 2 1 opt

m m fastT L V− −∝ ∝  (Table 1 and Table 4), well known for animals running with the maxim-
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al optimum speeds [41] [42] ( ) ( )max opt
run fast mV V L L∝  . 

Thereby, it has been demonstrated that the dynamic similarity establishes a link between the body-propulsion 
speed and locomotor-muscle contraction velocity, earlier described by Rome et al. [43]. Being united with the 
muscle-force similarity, both constraints lead to the mechanical similarity, as the basic principle explored in this 
research. More general approach to the problem of dynamic similarity in animal locomotion shows that the con-
cept of mechanical similarity [24] and obtained above findings naturally follow from the key principle of ana-
lytical mechanics applied to the resonant (in frequency and phase) efficient cyclic locomotion [38].  

4.1.2. Maximum Force Output against Structure and Velocity 
In muscle physiology, the functional effect of muscle conceptual architecture simply states that muscle force 
output is proportional to PCSA. It may seem that the proposed study of the adaptation of muscle structure via 
force production function is in qualitative agreement with this statement, because in both cases of fast and slow 
muscles exposed in Equation (24) the muscle force output is proportional to mA . Since a simplified treatment 
of the fast-muscle mechanics (in fact excluding other important dynamic variable mL ) leads to a widely adopted 
opinion that the size-independent peak stress ( )exp

prod mF A , validating for the particular case of slow muscles 
(Table 1), is generic for all types of muscle, as already discussed in Equation (5). 

Although the proposal on scaling of the maximum production force (and active stress) with muscle size 
shown in Equation (24) is a challenge for further research, the provided fairly general physical grounds are sup-
ported by empirical observations by Marden and Allen [44]. They statistically established that the peak force 
output in all biological (and human-made) motors falls into two fundamental scaling laws: 1) in fast-cycling 
motors, presented by flying insects, bats and birds, swimming fishes, and running animals the peak force scales 
as (motor mass)1 and 2) in slow-cycling motors, such as myosin molecules, muscle cells, and some (unspecified) 
“whole muscles” the force output scales as (motor mass)2/3; where the role of “motor mass” plays muscle (like 
fuel) mass. Within this context, the studied individual muscles are treated as complex biological motors, work-
ing due to actomyosin linkages (cross bridges), interacting in both longitudinal and transverse directions [5] [13]. 
The fact that muscle motors were observed from sarcomere to whole muscle organ passing through the sin-
gle-fibre level of muscle organization, makes a basis for the introduced below micro-macro scale correspon-
dence. 

The study of the in vivo force-length curves is provided here in terms of the three distinct characteristic points 
(shown in Figure 1) characterized by the force and velocity inequalities 

2 1 3 2 1 3and .m m m m m mF F F V V V> > < <                         (28) 

These three function-independent generic states are associated with the linear ( )1r = , bilinear ( )2r = , and 
trilinear ( )3r =  muscle dynamics determined via the muscle elastic moduli rmE  in Equations (25)-(27), re-
spectively. The mechanical characterization of slow and fast striated muscles is therefore provided in terms of 
the maximum ( )2mF∆ , optimum ( )1mF∆  and moderate ( )3mF∆  active elastic-force changes developed at the 
measurable maximum ( )3mV , optimum ( )1mV , and moderate ( )2mV  contraction velocities (Table 4). The sta-
bilization of the generic dynamic states is expected to be ensured by muscle tuning to natural frequencies, scaled 
to the dynamic length rmL  and shown in Table 4. 

4.1.3. Muscle Functions against Size and Shape 
Searching for answer on “what features make a muscular system well-adapted to a specific function?” [32], it 
has been communicated [13] that the natural conditions of stabilization of the moderate-velocity regime 2r = , 
adjusted via the invariable fast-twitch fibre elastic moduli described here in Equation (26), result in muscle spe-
cific primary functions directly observed through the adapted resting muscle length (see Figure 1 in [13]). 

Likewise [13], the elastic-force patterns, underlying concentric, eccentric, isometric, and cardiac contractions 
and determining eventually specific functions, are suggested, respectively in Equation (35), Equation (39), Equ-
ation (42), and Equation (44). The solutions to the muscle-force and muscle-shape constraints are accumulated 
in Table 2 as patterned functions well distinguished through the muscle structure parameter  
( )d ln d lnm m mA Lη =  established for such specialized skeletal muscles as the motor ( )1 4η = , brake 
( )2 3η = , and strut ( )3η = ∞ . They are now extended by the spring ( )4 2η =  and pump ( )5 1η =  for, respec-
tively cardiac muscles and striated muscles. These structurally adapted muscles distinguished in Table 2 by in-
dex 1,2, ,5m =   are thought of as to be suited to the efficient work when powering at resonant frequencies 
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[34] during shortening ( 1m = , 1 4η = ), lengthening ( 2m = , 2 3η = ), or oscillating near the “isometric” dynamic 
state ( 3m = , 3η = ∞ ), energy-saving state ( 4m = , 4 2η = ), and high-pressure-resistant state ( 5m = , 5 1η = ). The 
established lower structure parameter for the cardiac muscle ( 5 mη η< , with 5m ≠ ) is in accord with the de-
scription by Russel et al. [5] that “the heart chamber, unlike skeletal muscles, can extend in both longitudinal 
and transverse directions, and cardiac cells can grow in length and width”. The scaling finding 5 5d ln d lnL A=  
clearly indicates that the pump muscles may grow equally with mass in both along- and cross-sectional direc-
tions. Within this context, the scaling analysis tells us that the locomotor skeletal muscles are expected to grow 
more in length than width. 

In Table 3, conceivable stable dynamic structures corresponding to muscle activity in different dynamic re-
gimes are analyzed. As in the case of Table 2, the solutions to dynamic constraints follow from the similarity 
between the force output Equation (16) and elastic-force patterns. The resulting dynamic states are considered in 
terms of the scaling exponents for the muscle dynamic structure [ ],rm rmA L  preserving muscle shape and vo-
lume Equation (9). Other related observable mechanical characteristics are exemplified in Table 1 and Table 2. 
The major outcome of the analysis in Table 3 is that both slow-twitch and fast-twitch fibres belonging to the 
same muscle m should manifest concerted behavior coordinated by the dynamic active elastic forces and con-
trolled by dynamic structure. As example, let us consider dynamic structure of the motor muscle ( 1m =  in Ta-
ble 2) with the resting structure [ ]0 04 5, 1 5m ma l= =  presented by item 4 in Table 3. In the linear-displace- 
ment regime 1r = , the fast motor preserves the dynamic structure [ ]2 3,1 3 , that suggests the controllable 
spring as a secondary function for the motor. Likewise, the brakes and struts tuned to the linearly regime via the 
cycling frequency 1

1slowT −  or 1
1 fastT −  (items 1 and 2, also described in Table 4) show the same multifunctional 

spring-type activity [13], as the secondary function. It is remarkable that the fast motors, brakes and struts being 
switched to the slow bilinear regime via 1

2slowT −  work as slow motors, brakes and struts preserving the same cor-
responding dynamic structures (shown in item 3). When extended over other regimes, this finding also implies 
that even occupying similar dynamic volumes the slow-twitched fibres and fast-twitched fibres interact by dif-
ferent ways producing distinct force output, as discussed in Equation (24). In the maximum-velocity regime 

= 3r , the secondary function coincides with the primary function for the case of strut muscle (see items 5 and 
6), whereas the brake muscle may efficiently work as motor. New secondary activities are exposed by the motor, 
which also may function as “the fastest motor”, determined by ( ) ( )6 6 7 1 7 6η = = , and by the cardiac muscle, 
which fast-velocity action may suggest, say, a “sharp-heart” accommodation associated with 0 0η = , formally 
opposed to that of the strut ( )3η = ∞ . 

4.2. Direct Observations of Muscle Specialization 
“If a muscle is specialized for a particular mechanical role how this is reflected in it architecture?” [45]. The 
proposed solution to stated problem is demonstrated below by the comparative analysis between the muscle ar-
chitecture observed by allometric exponents and that predicted by the adaptation to a particular mechanical 
function. 

4.2.1. Isolated Muscles in Hindlimb of Mammals and Birds 
In Table 5 we analyze the morphometric data on the allometric exponents derived from the mean cross-sec- 
tional area ( )exp

0mA  and length ( )exp
0mL  of four skeletal muscles in the mammalian hindlimb for 35 quadrupedal 

species of body-mass domain exceeding four orders in magnitude. 
First, let us verify the cylinder-shape similarity of skeletal muscles described by Equation (9). The muscle 

mass index 0mα  estimated in Equation (10) via experimental data ( )exp
0ma  and ( )exp

0ml  is compared in Table 5 
with the measured indexes ( )exp

0mα . 
In Figure 2 and Figure 3, the method of determination of the primary mechanical function is illustrated: the 

adapted muscle structure is indicated by the appropriate theoretical point located most closely to the datapoint. 
The found reliable estimates ( )

0
est
mα  were used then in the muscle-function analysis in Figure 2 and Figure 3. 

The established small indices 0mα  generally validate the muscle biomechanics by proving a high-precision ob-
servation of locomotory muscle patterns via muscle morphometry and functional physiology. This implies that 
the effect of biomechanical adaptation of muscle design to active elastic forces predominates over effects of bi-
ological adaptation assigned to small ( )exp

0mα . 
Secondly, the analysis in Figure 2 and Figure 3 indicates strong correlations between the morphometrically 

characterized structure of skeletal muscle and one of the primary locomotor functions described in Table 2. The 
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primary functions indicated in Table 5 are found with a high degree of certainty. Indeed, as illustrated in Figure 
2, the deviations of distances measured along the dashed line, corresponding to a given muscle, between the da-
tapoint and distant challengers for the primary function, from the smallest distance indicating the primary can-
didate, always exceed the experimental uncertainty. 

Thirdly, the found muscle mechanical specifications do not conflict with the physiological categorization es-
tablished for joint extensors and flexors, which muscle structures are shown to be adapted to the brake and mo-
tor functions via activation of eccentric and concentric elastic forces. The found structure parameter 18plantη ≈  
indicates the foot support activity for plantaris as the primary function (Table 5) that is in accord with in vivo 
workloop presented in the inset c in Figure 1. As shown in Table 3, the struts are most conservative muscles  
 
Table 5. The analysis of the allometric data by Pollock and Shadwick [26] provided on the basis of Equation (10) and Table 
2. The shown statistical error is approximated by the symmetrized 95% confidence interval. The methodology of the analysis 
is illustrated in Figure 2. The primary functions found in Figure 2 and Figure 3 are described following Table 2, with 

( )
0

est
m mα α= . The overall muscle group ( )1g =  is determined as the standard mean over all muscles. *)DDF includes indi-

vidual flexor hallucis and flexor digitorum longus; SDF means superficial digital flexor.                               

Individual 
mammalian 

muscle 
( )exp
0ma  ( )exp

0ml  ( )exp
0mα  0mη  ( )

0
est
mα  ma  ml  Primary funct. 

Gastrocnemius 
(and soleus) 0.77 ± 0.02 0.21 ± 0.02 −0.03 3.7 −0.02 0.78 0.20 motor, 1m =  

Deep digital 
flexor (DDF)*) 0.85 ± 0.03 0.18 ± 0.02 0.03 4.7 0.03 0.82 0.21 motor, 1m =  

Common digital 
extensor (CDE) 0.69 ± 0.04 0.24 ± 0.02 −0.07 2.9 −0.07 0.70 0.23 brake, 2m =  

Plantaris (SDF) 0.91 ± 0.04 0.05 ± 0.04 −0.03 18 −0.04 0.96 0.00 strut, 3m =  

Ankle-joint 
muscle group 0.81 ± 0.03 0.17 ± 0.03 −0.03 4.8 −0.03 0.78 0.19 motor, 1g =  

 

 
Figure 2. The indirect observation of the primary activity of mammalian plantaris. 
The solid symbol is the datapoint [26] presented in Table 5 and the bars indicate ex-
perimental error. The open symbols are theoretical estimates for stable dynamic struc- 
tures established for the motor, brake, strut, or control functions described in Table 2, 
with ( )

0
est

m mα α=  taken from Table 5.                                        
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Figure 3. The observation of the primary mechanical function in some isolated indi-
vidual muscles in mammals. The analysis and notations correspond to those in Fig-
ure 2. The experimental (and theoretical) data for gastrocnemius, DDF (deep digital 
flexor), and CDE (common digital extensor) are shown, respectively, by the closed 
(and open) inverted triangles, regular triangles, and circles. All the data are taken 
from Table 5.                                                           

 
no changing their support function in non-linear regimes. In contrast, the gastrocnemius in mammals manifests 
their motor, strut, and brake functions in, respectively, uphill, level, and incline running of animals. Through the 
motor adapted structure with 1 4gastη η≈ = , the analysis in Figure 3 establishes the motor activity for gastroc-
nemius as the primary function naturally selected for the significant mechanical task of uphill running exploring 
the bilinear muscle dynamics. The effective trilinear gastrocnemius-displacement dynamics is most close to the 
brake-like activity ( )6 6η = , attributed to the secondary function of the motor experimentally observed in ga-
strocnemius of incline running turkey [31] and hopping tammar wallabies [28]. 

In Figure 4, the overall muscle peak stress data measured in limb muscles of animals in strenuous activity, 
reviewed by Biewener [29], are re-examined and re-analyzed accounting for the primary functions of hindlimb 
muscles established in Table 5. 

The uphill-motor specialization of gastrocnemius is independently supported by the compressive-stress anal-
ysis made in Figure 4 for fast running, jumping, and hopping mammals. The stress scaling exponents ( )ms  
predicted for the motor ( )1 1 5s = , strut ( )3 0s = , and control ( )4 0s =  functions are shown to be distin-
guishable in work-specific mammalian muscles described in Table 2. Hence, although the overall-function data 
by Biewener [29] indeed expose almost weight-independent muscle stress, earlier postulated by McMahon in 
Equation (5) and only in part justified here by the slow-fibre muscles (Table 1) and strut muscles (Table 2), the 
analyses in Figure 4 demonstrates how the function-specific muscle stress may serve as a new tool for the direct 
observation of muscle specialization generally ignored in all previous overall-function analyses. 

I have also investigated an interesting question: whether the primary function established for a certain leg 
muscle in mammals specialized to fast running coincides with that for the same muscle in birds? The pioneering 
data on individual leg muscles in 8 running birds, ranging in size from 0.1 kg quail to 40 kg ostrich, are analyzed 
in Table 6 and Figure 5. 

In running and non-running birds (Figure 5), the gastrocnemius is employed as the brake and spring, in con-
trast to the motor function in mammals (Table 5). This is in accord with Bennett [27], who noted that “the full 
force-generated capacity of gastrocnemius is only used occasionally, such as during take-off, when a bird at-
tempts to throw itself into the air”. This explains our indirect observation: the primary function of the gastroc-
nemius in running specialists is attributed to the foot flexor in mammals and ankle extensor in birds (Table 6). 
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In non-running birds, the legs are designed to control the ground locomotion (Figure 5), whereas their wings 
may share motor and brake functions (Table 3), in accord with that reviewed by Dickinson et al. [6]. 
 

 
Figure 4. The qualitative study of the in vivo data on the peak stress in indi-
vidual leg muscles of animals in strenuous activity. The symbols employed 
above in Figure 2 and Figure 3 are extended by the open circles (triceps) for 
the data on peak muscle stress taken from Table 1 in [29], with the exclusion 
of the slow-mode data on cantering goat and trotting cat. The data [46] on the 
activated isometric stress in isolated white rabbit tibialis are added. The 
dashed line shows the brake-functional stress indicated by the stress scaling 
exponent 1 4s = . The solid lines are drawn by 1 5115 M⋅ , for the motor 
function, and by 215 kPa, for the strut and spring functions. All coefficients 
are adjusted by eye.                                                 
 

Table 6. The analysis of the allometric data by Maloiy et al. [47]. The shown large error is due to relatively wide confidence 
limits. The mean exponents ( )

0
est
ml  are estimated via Equation (10). The overall muscle group is determined as the standard 

mean over all muscles. The indicated primary functions and active elastic forces are described by the evaluated dynam-
ic-structure exponents 2ma  and 2ml  found as most close to the experimental resting-volume data on ( )exp

0ma  and ( )exp
0ml  and 

therefore assigned to regime 2r =  (Table 2).                                                                

Running birds ( )exp
0ma  ( )exp

0mα  ( )
0

est
ml  ( ) ( )exp

0 0
est

m ma l  2ma  2ml  Primary function 
(force) 

Gastrocnemius 0.81 ± 0.14 0.14 0.33 2.5 0.85 0.29 brake (eccentric) 

Digital flexors 
(DF) 0.76 ± 0.22 −0.0.3 0.21 3.6 0.78 0.19 motor (concentric) 

Femorotibialis 0.80 ± 0.12 −0.02 0.18 4.4 0.78 0.20 motor (concentric) 

Overall group 0.79 ± 0.16 0.03 0.24 3.3 0.77 0.26 brake (eccentric) 
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Figure 5. The analysis of the primary mechanical functions for leg muscles in run-
ning and non-running birds. The measured (and estimated) data taken from Table 6 
(and Table 2) for gastrocnemius, femorotibialis, and digital flexors are shown by the 
closed (and open) inverted triangles, circles, and regular triangles, respectively. The 
semi-open triangles are the data by Bennett [27] for non-running birds.              

4.2.2. Micro-Macro Scale Correspondence 
There are many striking examples when skeletal muscles expose adaptation to a specific function, e.g. [3] [48]. 
The striated muscles anatomically suited to concentric or eccentric work [2] are structurally distinct having, re-
spectively, long thin cells or short wide cells [5]. This observation suggests the microscopic level of muscle-cell 
adaptation introduced here by  

( ) ( ) ( ) ( )andconc ecent ecent conc
cell cell cell cellA A L L> >                        (29) 

for the cellular cross-sectional area cellA  and length cellL . Adopting these function specific trends, one may 
expect to observe the cell-structure parameters 4cellη =  and 3 for sarcomeres accommodated to efficient 
shortening or stretching of muscle as a whole. 

A general question arises whether allometric coefficients of proportionality omitted above in all structure- 
function power-law (scaling) relations are also attributed to active elastic strains accompanying maximum force 
production? Or, alternatively, other microscopically justified mechanisms, c.f. [49], or additional parameters 
(such as pinnate angle) may result in different general macroscopic consequences? Given the highly conserva-
tive nature of contractive units of skeletal muscles and their well pronounced organization [29], the specif-
ic-function trends of the muscle cross-sectional area 

( ) ( ) ( ) ( )isom conc eccen sprin
strut motor brake contrA A A A> > >                        (30) 

and muscle-fibre length 
( ) ( ) ( ) ( )isomsprin eccen conc
contr brake motor strutL L L L> > >                         (31) 

are generally expected from Table 2. The suggested trends become observable via the primary functions estab-
lished in Table 5 for gastrocnemius ( )1m = , DDF ( )1m = , CDE ( )2m = , and plantaris ( )3m = , when the 
regression data [26] on passive-muscle structure ( ) ( ) ( ) ( )exp exp

0 0,m mA M L M 
   are taken additionally into considera-  

tion: ( ) ( ) ( ) ( )exp exp exp exp
plant gast DDF CDEA A A A> >  and ( ) ( ) ( ) ( )exp exp exp exp

CDE gast DDF plantL L L L> > , starting with > 1 kgM . 
Similarly, the trend for active stiffness 

( ) ( ) ( ) ( ) ( )max max max max maxand, generally,strut motor brake fast slowK K K K K> > >                (32) 
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straightforwardly follows from Table 2. Given that the optimum velocity for fast fibres 1 2
1m mV L∝  (Table 1), 

Equation (31) provides 
( ) ( ) ( ) .opt opt opt

brake motor strutV V V> >                               (33) 

Moreover, a crude estimate for the cost energy 
( ) ( ) ( )max max max
motor strut brakeCU CU CU> >                            (34) 

follows from ( )max
fast mCU M∝  in Equation (22) and the experimental data by Pollock and Shadwick [26], 

( ) ( ) ( )exp exp exp
1 3 2M M M> > , considered at the same body mass M. The finding in Equation (34) is in accord with 

the experimental observation [49]: muscles contracting nearly isometrically (strut function) generate force more 
economically than muscles involved in concentric work (via motor function). 

4.2.3. Muscle Dynamics of Mammalian Legs and Dragonfly Wings 
Given that mammalian leg extensors are active mostly during lengthening [2], the brake primary function 
( 2m =  in Table 2) could be assigned to leg muscles specified by effective length 1 4

legL M∝  ( 0legα =  is 
adopted). In accord with Hill’s second velocity-inverse-length constraint, underlaid by the proper frequency 

1 2
3slow mT L− −∝  in the maximum-velocity regime (Table 4), the theory predicts ( )max 1 1 4

leg legV L M− −∝ ∝  and 
( )max 2 1 161 leg legT L M− −∝ ∝ , for steady locomotory modes required slow-fibre muscles [40]. Similarly, for the 

wing-motor muscles in flying birds ( 1m =  in Table 2) one should expect ( )max 1 1 5
wing wingV L M− −∝ ∝ , for contrac-  

tion velocity, and ( )max 1 251 wingT M −∝ , for the frequency or, alternatively, ( ) 1 51 opt
wingT M −∝ , in the optimum-ve-  

locity regime (see Table 4). Hence, analytically revealed Hill’s constraint becomes observable via the empirical 
regression data by Medler [48]: on the maximum-amplitude contraction velocities for the locomotor muscles in 
leg of terrestrial animals, ( )exp 0.25

legV M −∝ , and that for wings in flying birds, bats, and insects, ( )exp 0.20
wingV M −∝ . 

Moreover, the proposed theory sheds light on other empirical data on the maximum velocity in fast running an-
imals ( )exp 0.125

maxV M −∝  [48] [49] successfully explained by ( ) 1 8
max

preV M −∝  predicted by McMahon’s elastic si-
milarity model [19]. As follows from Table 4, both McMahon’s result and the data now are specified by the 
maximum-velocity regime, with ( )max 1 2

3 fast legV L−∝ , required fast-fibre leg muscles during non-steady transient 
modes [40] [43]. Likewise, the regression analysis made in Figure 6 for the motor-flight muscle of resting 
length scaling as 1 5

0m mL M∝ , indicates that the data on the wingbeat frequency ( )exp 0.201 wing mT M −∝  [50] were 
obtained in dragonflies, flying in steady regimes at optimum-amplitude velocities. 

In the same optimum-velocity regime (Table 1), the maximum-amplitude static muscle force 
( ) ( )exp 2 3

1
slow

stat m mF F M≅ ∆ ∝  and net lever-system force ( ) ( )exp
1

fast
ind m mF F M≅ ∆ ∝  reported by Schilder and Marden 

[50] may be associated with the slow and fast activated fibres in the basalar muscles tuned elastically to the li-
near regime through the muscle dynamic volume provided by PCSA ( ) 2 3

1
dyn
m mA M∝  and length ( ) 1 3

1
dyn
m mL M∝ . 

The observed dynamic force output (exp) 0.83
dyn mF M∝  can be therefore suggested as the mixed-fibre force 

( ) ( ) 5 6
1

pred mix
dyn m mF F M≅ ∆ ∝  (Table 1), i.e. as a compromise of the slow force output ( )slow

mF  and fast force output 
( )fast

mF . These estimates challenge further analysis of the basalar in vitro force-length loops (workloops) studied 
in [50]. 

5. Conclusions 
A theoretical framework for the mechanical characterization of the three activated states of the striated muscle 
introduced via force-length cycling in terms of the three well distinguished dynamic transient regimes is pro-
posed. The explicit analytical description of muscle locomotor functions and related mechanical characteristics 
is provided on the basis of two concepts: 1) the preservation of dynamic muscle volume associated with 
self-preservation of the spindle-type shape in skeletal muscles and egg-type shape in cardiac muscles 2) the me-
chanical similarity between action (loading) and reaction (elastic) forces takes place in biomechanically equiva-
lent states. Exploring a full set of a few numbers of patterns known for elastic forces from the continuum me-
chanics, the macroscopic study of the force production and its functional-structural accommodation in the 
loaded muscle organs provides the following major outcomes. 

1) It is demonstrated how the generic principle of mechanical (force and velocity) similarity provides the dy-
namic (frequency-velocity) constraints for the muscle contractions, first observed by Hill in hovering birds and 
then revealed in locomotor muscles of running animals and flying birds, bats, and insects. 
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Figure 6. Scaling of the basalar structure to muscle mass in male dra-
gonflies (Odonata and Anisoptera, listed in Figure 5 in [50]). The data-
points for muscle length ( )exp

0mL  is a courtesy by the authors. The esti-

mated muscle cross-sectional area ( )
0

est
mA  is obtained on the basis of Eq-

uation (1) taken with ( )exp 31060 kg mmρ =  [51]. The solid lines are 
1 50.052motor mL M= ⋅  and 4 50.018motor mA M= ⋅ . The dashed lines indi-

cated by other scaling exponents are drawn according to muscle specia-
lization shown in Table 2. All pre-exponential coefficients are adjusted 
by eye.                                                       

 
2) It is shown how the standard relations from classical mechanics of solids may successfully work in soft 

tissue mechanics. The study is grounded by the active-force muscle stiffness well distinguished in muscle work- 
loops near the maximum-amplitude exerted forces. At a fixed muscle shape, the muscle active stiffness, under-
laid by sarcomere stiffness, is shown to be driven by the elastic moduli, which encompass all contractive ele-
ments arranged here as the elastic continuum medium. 

3) The provided analysis of direct empirical observations of the maximal forces exerted by muscles in legs of 
mammals and birds and the scaling analysis of the resting muscle structures corroborates the major hypothesis 
of the study: the force output amplitude in high powering fast and slow individual muscles is linear with, respec-
tively, muscle volume and cross-sectional area, regardless of their muscle’s specialization specified by primary 
functions. 

4) The study reveals that the mechanical similarity applied to locomotor skeletal muscles specialized in spring, 
brake, and motor activities resembles McMahon’s “geometric”, “elastic”, and “static” stress similarities. It is not 
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striking since the employed here scaling patterns for reaction elastic forces are well established in continuum 
mechanics of solids regardless of the nature of origin of other mechanical forces, e.g. external “passive” gravita-
tional-field forces or internal “active” muscular-field forces. As the result, several observations of empirical data 
matching McMahon’s predictions, e.g. [48] [49], are illuminated in terms of distinct muscle dynamic regimes. 

5) The macroscopic structures of locomotor skeletal muscles revealed by the muscle allometry are found to be 
well adapted to the dynamic state with generation of maximum force at moderate velocity contractions. The re-
levant bilinear-displacement muscle dynamics, involving both fast-twitch and slow-twitch powering muscle fi-
bres sheds light on the origin of allometric power laws and explains muscle specialization. The adapted struc-
tures examined via the available empirical data indicate that the leg muscles are brakes in mammals and springs 
in non-running birds, whereas the wing muscles are motor-brake engines in flying species. A new pump func-
tion suggested for the cardiac muscles needs further experimental tests. 

6) The provided study of the muscle specialization in mammalian hindlimb indicates that the force production 
function is a dominated factor in the accommodation of muscle structure. When the mechanical scaling expo-
nents are compared with the relatively small muscle-mass index, this finding likely indicates the predominating 
role in mass distribution due to mechanical adaptation effects over that due to biological adaptive mechanisms. 
As the result, a new tool for the investigation of indirect effects of the biomechanical adaptation of individual 
locomotor muscles is suggested through the regression analysis of in vivo muscle stresses in synergists scaled 
across different-sized animals. 

7) The assumption on that the muscle tuning muscle ability of animals can be modeled by active elastic forces 
via non-linear muscle elastic moduli is validated through the observation of theoretical predictions made in 
muscle dynamics for legs and wings in running and flying specialists. Predictions are also provided for the ex-
perimental testing of the primary and secondary functions realized by the tuning the cycling muscle to the proper 
natural frequency. 

8) The conservative character of architecture and related mechanical characteristics of striated muscles sug-
gests general trends following from the mechanical and shape constraints. The trends dictated by the primary 
functions explain, in particular, why the muscles having larger fibre and sarcomere lengths and suited to effi-
cient eccentric work, tend toward higher optimum contraction velocities, but show lower maximum stiffness and 
mechanical energy cost. 

9) As an intriguing outcome of the analysis of maximal contraction muscle velocities and frequencies, the 
maximum-speed steady locomotion is revealed to be controlled by non-linear elasticity of slow-fibre muscles 
generating moderated force. This finding deserves further evaluation in finite muscle element analysis when 
studying top speeds of living and extant animals. 
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Appendix A. List of Notations 
Abbreviations 
PCSA—physiologic cross-sectional area 
Mathematical signs and symbols  
=—common equality sign 
≡—identity sign implying “by definition” 
≈—approximate equality sign 


—proportionality relation symbol omitting only numerical coefficients 
≅ —here used as similarity sign supporting only physical dimension units 
∝ —here used as scaling rule symbol not supporting dimension units 
Physical and geometrical notations 

mα —muscle-mass allometric index 
( )opt
mε —muscle strain in the optimum-velocity dynamic regime 

mη —muscle structure parameter 

tissρ —tissue density 

mρ —muscle density 
( )max
tissσ —peak tissue stress 
L∆ —length change 
F∆ —force change 
mt∆ —activation timing of muscle m  

rmA —cross-sectional area of muscle m  in passive ( )0r =  and active ( )0r ≠  states 
a —scaling exponent for cross-sectional area 
D —diameter of ideal cylinder 

rmE —active-muscle elastic modulus establishing the dynamic regime 0r ≠  
e—strain scaling exponent 

( ) ( )max max
elast mF F∆ = ∆ —maximum active elastic force 

( )fast
prodF —production force by fast muscle 
( )conc

motorF —elastic force adapted to concentric work in motor muscle 
( )max

muscF —maximum force exerted by muscle 

mK —active muscle stiffness 
sK —sarcomere/cellular stiffness 

L —length of an ideal cylinder 
mL —variable muscle length in non-specified dynamics 
rmL —dynamic muscle length in the regime r  

l —length exponent 
m —as index, muscle in unspecified function 
M —body mass of animals 

mM —muscle mass 
r —numerical parameter indicating transient dynamic states via optimum-velocity ( )1r = , moderate-velocity 
( )2r = , and high-velocity ( )3r =  dynamic regimes, distinct of passive muscle state ( )0r = . 

rmT —period of cycling in the adapted regime r  
rmV —muscle contraction velocity in the dynamic regime r  

W —body weight 

Appendix B. Scaling Muscle Functions 
The motor function or motor activity is associated with the generation of the active force of amplitude ( )max

prodF  
at moderate contraction velocities during muscle shortening, below the turning points 2 in the insets a, b and c in 
Figure 1. In fast-fibre muscles, the corresponding concentric force  
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( ) ( ) ( ) ( ) ( )max 3 2 1
2 2 2 2

conc conc fast fast
motor elast m m m m prodF F F E A L F−= = ∆ ≅                     (35) 

is described by the known universal pattern of the maximal elastic forces [37] emerging during pure bending, 
pure torsion, as well as complex bending-torsion loading of a long cylinder of length 2mL  and cross-sectional 
area 2mA  [30]. The exploration of Equation (35) though Equation (8), Equation (16), Equation (24), and Equa-
tion (26) results in the fast-muscle-force constraint 3 2 1m m ma l α− = + . It is remarkable that the case of 
slow-fibre muscle, namely 

( ) ( ) ( ) ( ) ( )max 3 2 1
2 2 2 2

conc conc slow slow
motor elast m m m m prodF F F E A L F−= = ∆ ≅                   (36) 

results in the slow-muscle-force constraint 3 2 2m m ma l a− = , which is exactly the same as fast muscle, in view 
of function-independent Equation (10). Therefore, any muscle tuned to the motor locomotor function should 
expose its dynamic structure scaled by 

( ) ( ) ( ) ( )4 11 , 1 ,
5 5

conc conc
motor motor motor motora lα α= + = +                      (37) 

regardless of the fibre type content. This finding follows from both the muscle-force constraints solved with the 
help of the function-independent muscle-shape constraint shown in Equation (10). Moreover, as shown in [30], 
the principal component of the compressive stress ( )conc

mσ , specified in Equation (17), may be caused by the 
peak transverse-tensile strains 

( )
( )

( )
max

, with ,
2

mconc concem m
motor m m motor m

m

D a
M e e l

L
ε

∆
= ∝ = = −                 (38) 

where ( )max 1 2
m m mD D A∆  

 is transverse muscle deformation. 
Likewise, the maximum elastic eccentric force  

( ) ( ) ( ) ( )2 2
2 2 2 2 ,eccen eccen eccen fast

brake m m m m prodF F E A L F−= ∆ ≅                    (39) 

associated with the brake muscle function (see the inset b in Figure 1) provides the maximum elastic stress 

( )
( )

( )max , with 2 ,m

eccen
eccensbrake

brake m m brake m m
m

F
M s s a l

A
σ = ∝ = = −                 (40) 

following from Equation (17) and Equation (39). The unique solution to both fast-muscle-force constraint, 
2 2 1m m ma l α− = + , and slow-muscle-force constraint, 2 3m m ma l a− = , is 

( ) ( ) ( ) ( ) ( )3 11 , 1 .
4 4

eccen eccen eccen
brake brake brake brake brakea l sα α= + = = +                 (41) 

The strut muscle function treated as antagonistic to both motor and brake functions drives nearly isometric con-
tractions characteristic of small, but non-zero length change ( )m mL L∆ 

 achieved near peak forces (see the 
inset c in Figure 1). This suggests the isometric force 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2, with ,isom isom isom fast isom isom

strut m m m prod m m mF E A F L Lε ε= ≅ = ∆               (42) 

produce by fast muscles. Again, one solves the muscle strut constraints 2 1m m ma l α+ = +  and 2 2m m ma l a+ =  
resulting in 

( ) ( ) ( ) ( ) 2
2 21 and 0, with ,isom isom isom isom

strut strut strut strut m ma l s L Lα= + = = ∆ ∝               (43) 

for any type of muscles. 
A new antagonist (to strut muscle) tuned to the cardiac type contractions via active elastic force 

( ) ( ) ( ) ( )2
2 2 2

card card card fast
pump m m m prodF F E L F= ∆ ≅                         (44) 

is associated with, say, pump function providing the fast-muscle-force constraint 2 1m ml α= + . This yields  

( ) ( ) ( ) ( ) ( )1 1 ,
2

card card card card
pump pump pump pump pumpa l s e α= = = = +                      (45) 
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equally applied to slow-fibre muscles resulting in the slow-force constraint m ml a= . 
To complete the intrinsic-force description, the spring-type control function associated with the elastic force 

( ) ( ) ( ) ( ) ( )2 3 2 3 2 3
1 1 ,sprin opt slow slow slow

contr elast m m m m m prodF F E M E A L F= ∝ ∝ ≅                 (46) 

produced by slow-fibre muscles, results in 

( ) ( ) ( ) ( ) ( ) ( )2 11 , 1 , with 0,
3 3

sprin sprin sprin sprin
cont cont cont cont cont conta l s eα α= + = + = =            (47) 

This solution follows from the slow-force and fast-force constraints ( )2 3m m ma l a+ =  and ( )2 5 3 1m m ma l α+ = +  
and therefore is valid for any type of multifunctional muscle [13] tuned to the optimum-velocity regime. All ob-
tained specific-function mechanical characteristics are summarized in Table 2. 
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