Enzymes of Entomopathogenic Fungi, Advances and Insights

Abstract

Entomopathogenic fungi (EF) are recognized biological control agents of insects. Basically, the entomopathogenic fungi pathogen activity depends on the ability of its enzymatic equipment, consisting of lipases, proteases and chitinases, which are in charge of breaking down the insect’s integument. Lipases are the first enzymes synthesized by the entomopathogenic fungi. Recently, a cytochrome P450 subfamily, referred as CYP52XI and MrCYP52 has been identified in Beauveria bassiana and Metarhizium robertsii, respectively. These break down long-chain alkenes and fatty acids to become initial nutrients. Subsequently, subtilisin type (Pr1) proteases sintetize; these enzymes are considered as virulence indicators and they are regulated by a signal transduction mechanism activated by the protein kinase A (PKA) mediated by AMPc. Through the employment of genetic engineering, it has been possible to increase virulence producing Pr1 recombinants with Androctonus australis neurotoxins or with chitinases, reducing the insect’s time of death. In the course of time, the Pr1 protease gene has presented evolutionary adaptations by gene duplication or horizontal transfer infecting different orders of insects. In the same way, the entomopathogenic fungi chitinases have presented a functional diversification. Currently, these have been phylogenetically classified into three subgroups, in accordance to the catalytic site domain and the chitin binding domain. The chitinolytic activity has increased through a directed evolution processes and genetic recombination with Bombyx mori chitinase. Recently, enzymes have been employed as control agents for insects and phytopathogenic fungi (disease originator) opening new potentialities in order to improve the entomopathogenic fungi use. Solid state fermentation is a bioprocess that would produce at great scale enzymes and some other metabolites in grade of increasing the entomopathogenic fungi virulence, in the control of insects and potentially in some diseases affecting plants.

Share and Cite:

Sánchez-Pérez, L. , Barranco-Florido, J. , Rodríguez-Navarro, S. , Cervantes-Mayagoitia, J. and Ramos-López, M. (2014) Enzymes of Entomopathogenic Fungi, Advances and Insights. Advances in Enzyme Research, 2, 65-76. doi: 10.4236/aer.2014.22007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mustafa, U. and Kaur, G. (2009) Extracellular Enzyme Production in Metarhizium anisopliae Isolates. Folia Microbiologica, 54, 499-504.
http://dx.doi.org/10.1007/s12223-009-0071-0
[2] de Faria, M.R. and Wraight, S.P. (2007) Mycoinsecticides and Mycoacaricides: A Comprehensive List with Worldwide Coverage and International Classification of Formulation Types. Biological Control, 43, 237-256.
http://dx.doi.org/10.1016/j.biocontrol.2007.08.001
[3] Charnley, A.K. and Collins, S.A. (2007) Entomopathogenic Fungi and Their Role in Pest Control. In: Kubicek, C.P. and Druzhinina, I.S., Eds., The Mycota IV: Environmental and Microbial Relationships, 2nd Edition, Springer-Verlag, Berlin, 159-187.
[4] Wösten, H.A.B. (2001) Hydrophobins: Multipurpose Proteins. Annual Review of Microbiology, 55, 625-646.
http://dx.doi.org/10.1146/annurev.micro.55.1.625
[5] Pedrini, N., Crespo, R. and Juárez, M.P. (2007) Biochemistry of Insect Epicuticle Degradation by Entomopathogenic Fungi. Comparative Biochemistry and Physiology-Part C: Toxicology & Pharmacology, 146, 124-137.
http://dx.doi.org/10.1016/j.cbpc.2006.08.003
[6] Lubeck, I., Arrud, W., Souza, B.K., Stanis çuaski, F., Carlini, C. R., Schran, A., et al. (2008) Evaluation of Metarhizium anisopliae Strains as Potential Biocontrol Agents of the Tick Rhipicephalus (Boophilus) microplus and the Cotton Stainer Dysdercus peruvianus. Fungal Ecology, 1, 78-88.
http://dx.doi.org/10.1016/j.funeco.2008.09.002
[7] Boldo, J.T., Junges, A., Amaral, K.B., Staats, C.C., Vainstein, M.H. and Schrank, A. (2009) Endochitinase CHI2 of the Biocontrol Fungus Metarhizium anisopliae Affects Its Virulence toward the Cotton Stainer Bug Dysdercus Peruvians. Current Genetics, 55, 551-560.
http://dx.doi.org/10.1007/s00294-009-0267-5
[8] Wang, C.S. and St. Leger, R.J. (2006) A Collagenous Protective Coat Enables Metarhizium anisopliae to Evade Insect Immune Responses. Proceedings of the National Academy Sciences USA, 103, 6647-6652.
http://dx.doi.org/10.1073/pnas.0601951103
[9] Arboleda-Valencia, J.W., Gaitán-Bustamante, A.L., Valencia-Jiménez, A. and Grossi-de-Sá, M.F. (2011) Cytotoxic Activity of Fungal Metabolites from the Pathogenic Fungus Beauveria bassiana: An Intraspecific Evaluation of Beauvericin Production. Current Microbiology, 63, 306-312.
http://dx.doi.org/10.1007/s00284-011-9977-2
[10] Téllez, J.A. Cruz, M.G., Mercado, A. and Asaff, A.A. (2009) Mecanismos de Acción y Respuesta en la Relación de Hongos Entomopatógenos e Insectos. Revista Mexicana de Micología, 30, 73-80.
[11] Hasan, S., Ahmad, A., Purwar, A., Khan, N., Kundan, R. and Gupta, G. (2013) Production of Extracellular Enzymes in the Entomopathogenic Fungus Verticillium lecanii. Bioinformation, 9, 238-242.
http://dx.doi.org/10.6026/97320630009238
[12] Yang, J., Tian, B., Liang, L. and Zhang, K.Q. (2007) Extracellular Enzymes and the Pathogenesis of Nematophagous Fungi. Applied Microbiology and Biotechnology, 75, 21-31.
http://dx.doi.org/10.1007/s00253-007-0881-4
[13] Richards, O.W. and Davies, R.G. (1978) Imm’s Outline of Entomology. 6th Edition, Chapman & Hall Ltd., London.
[14] Vincent, F. and Wegst, G. (2004) Design and Mechanical Property of Insect Cuticle. Arthropod Structure Development, 33, 187-199. http://dx.doi.org/10.1016/j.asd.2004.05.006
[15] Vincent, J.F.V. (2002) Arthropod Cuticle: A Natural Composite Shell System. Composites Part A: Applied Science and Manufacturing, 33, 1311-1315.
http://dx.doi.org/10.1016/S1359-835X(02)00167-7
[16] Ali, S., Huang, Z. and Ren, S.X. (2009) Production and Extraction of Extracellular Lipase from the Entomopathogenic Fungus Isaria fumosoroseus (Cordycipitaceae:Hypocreales). Biocontrol Sciences Technology, 19, 81-89.
http://dx.doi.org/10.1080/09583150802588524
[17] da Silva, W.O.B., Santi, L., Scharank, A. and Vainstein, M.H. (2010) Metarhizium anisopliae Lipolytic Activity Plays a Pivotal Role in Rhipicepthalus (Boophilus) microplus Infection. Fungal Biology, 144, 10-15.
http://dx.doi.org/10.1016/j.mycres.2009.08.003
[18] Supakdamrongkul, P., Bhumiratana, A. and Wiwat, C. (2010) Characterization of an Extracellular Lipase from the Biocontrol Fungus, Nomuraea rileyi MJ, and Its Toxicity toward Spodoptera litura. Journal of Invertebrate Pathology, 105, 228-235.
[19] Pedrini, N., Zhang, S., Juárez, M.P. and Keyhani, N.O. (2010) Molecular Characterization and Expression Analysis of a Suite of Cytochrome P450 Enzymes Implicated in Insect Hydrocarbon Degradation in the Entomopathogenic Fungus Beauveria bassiana. Microbiology, 156, 2549-2557.
http://dx.doi.org/10.1099/mic.0.039735-0
[20] Zhang, S., Wideman, E., Bernard, G., Lesot, A., Pinot, E., Pedrini, N., et al. (2012) CYP52X1, Representing New Cytochrome P450 Subfamily, Displays Fatty Acid Hydroxylase Activity and Contributes to Virulence and Growth on Insect Cuticular Substrates in Entomopathogenic Fungus Beauveria bassiana. Journal of Biological Chemistry, 28, 13477-13486.
http://dx.doi.org/10.1074/jbc.M111.338947
[21] Pedrini, N., Juárez M.P., Crespo, R. and de Alaniz, M.J.T. (2006) Clues on the Role of Beauveria bassiana Catalases in Alkane Degradation Events. Mycologia, 98, 528-534.
http://dx.doi.org/10.3852/mycologia.98.4.528
[22] Van Bogaert, I.N., Groeneboer, S., Saerens, K. and Soetaert, W. (2011) The Role of Cytochrome P450 Monooxygenases in Microbial Fatty Acid Metabolism. FEBS Journal, 278, 206-221.
http://dx.doi.org/10.1111/j.1742-4658.2010.07949.x
[23] Lin, L., Fang, W., Liao, X., Wang, F., Wei, D. and St. Leger, R.J. (2011) The MrCYP52 Cytochrome P450 Monoox- ygenase Gene of Metarhizium robertsii Is Important for Utilizing Insect Epicuticular Hydrocarbons. PLoS ONE, 6, e28984.
http://dx.doi.org/10.1371/journal.pone.0028984
[24] Wang, C., Typas, M.A. and Butt, T.M. (2002) Detection and Characterization of Pr1 Virulent Gene Deficiencies in the Insect Pathogenic Fungus Metarhizium anisopliae. FEMS Microbiology Letters, 213, 251-255.
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11314.x
[25] St. Leger, R.J., Bidochka, M.J. and Roberts, D.W. (1994) Isoforms of the Cuticle-Degrading Pr1 Proteinase and Production of a Metalloproteinase by Metarhizium anisopliae. Archives of Biochemistry Biophysics, 313, 1-7.
http://dx.doi.org/10.1006/abbi.1994.1350
[26] Liu, S.Q., Meng, Z.H., Yang, J.K., Fu, Y.K. and Zhang, K.Q. (2007) Characterizing Structural Features of Cuticle-Degrading Proteases form Fungi by Molecular Modeling. BMC Structural Biology, 7, 33.
http://dx.doi.org/10.1186/1472-6807-7-33
[27] Bidochka, M.J. and Meltzer, M.J. (2000) Genetic Polymorphisms in Three Subtilisin-Like Protease Isoforms (Pr1A, Pr1B, and Pr1C) from Metarhizium Strains. Canadian Journal Microbiology, 46, 1138-1144.
http://dx.doi.org/10.1139/w00-112
[28] Fang, W., Pava-Ripoli, M., Wang, S. and St. Leger, R.J. (2009) Protein Kinase A Regulates Production of Virulence Determinants by the Entomopathogenic Fungus, Metarhizium anisopliae. Fungal Genetic Biology, 46, 277-285.
http://dx.doi.org/10.1016/j.fgb.2008.12.001
[29] Sun, M.H. and Liu, X.Z. (2006) Carbon Requirements of Some Entomopathogenic and Mycoparasitic Hyphomycetes as Fungal Biocontrol Agents. Mycopathology, 161, 295-305.
http://dx.doi.org/10.1007/s11046-006-0249-9
[30] Castellanos-Moguel, J., González-Barajas, M., Mier, T., Reyes Montes, M.R., Aranda, E. and Toriello, C. (2007) Virulence Testing and Extracellular Subtilisin-Like (Pr1) and Tripsina-Like (Pr2) Activity during Propagule Production of Paecilomyces fumosoroseus Isolates from Whiteflies (Homoptera: Aeyrodidae). Revista Iberoamericana de Micología, 24, 62-68.
[31] Wang, C. and St. Leger, R.J. (2007) A Scorpion Neurotoxin Increases the Potency of a Fungal Insecticide. Nature Biotechnology, 25, 1455-1456.
http://dx.doi.org/10.1038/nbt1357
[32] Lu, D.M., Pava-Ripoli, M., Li, Z. and Wang, C. (2008) Insecticidal Evaluation of Beauveria bassiana Engineered to Express a Scorpion Neurotoxin and a Cuticle Degrading Protease. Applied Microbiology Biotechnology, 81, 515-522.
http://dx.doi.org/10.1007/s00253-008-1695-8
[33] Fang, W., Feng, J., Fan, Y., Zhang, Y., Bidochka, M.J., St. Leger, R.J. and Pei, Y. (2009) Expressing a Fusion Protein with Protease and Chitinase Activities Increases the Virulence of the Insect Pathogen Beauveria bassiana. Journal of Invertebrate Pathology, 102, 155-159.
http://dx.doi.org/10.1016/j.jip.2009.07.013
[34] Xia, L., Zeng, Z., Ding, X. and Huang, F. (2009) The Expression of a Recombinant Cry1Ac Gene with Subtilisin-Like Protease CDEP2 Gene in Acrystalliferous Bacillus thuringiensis by Red/ET Homologous Recombination. Current Microbiology, 59, 386-392.
http://dx.doi.org/10.1007/s00284-009-9449-0
[35] Yu, G., Liu, J., Xie, L., Wang, X., Zhang, S. and Pan, H. (2012) Characterization, Cloning and Heterologous Expression of a Subtilisin-Like Serine Protease Gene VlPr1 from Verticillium lecanii. Journal of Microbiology, 50, 939-946.
http://dx.doi.org/10.1007/s12275-012-2199-x
[36] Dubovskiy, I.M., Whitten, M.M.A., Yaroslavtseva, O.N., Greig, C., Kryukov, V.Y., et al. (2013) Can Insects Develop Resistance to Insect Pathogenic Fungi? PLoS ONE, 8, e60248.
http://dx.doi.org/10.1371/journal.pone.0060248
[37] Sprockett, D.D., Piontkivska, H. and Blackwood, C.B. (2011) Evolutionary Analysis of Glycosil Hydrolase Family 28 (GH28) Suggest Lineage-Specific Expansions in Necrotrophic Fungal Pathogens. Gene, 479, 29-36.
http://dx.doi.org/10.1016/j.gene.2011.02.009
[38] Graur, H. and Li, W.H. (2000) Fundamentals of Molecular Evolution. 2nd Edition, Sinauer Associates, Sunderland.
[39] Bagga, S., Hu, G., Screen, S.E. and St. Leger, J.R. (2004) Reconstructing the Diversification of Subtilisins in the Pathogenic Fungus Metarhizium anisopliae. Gene, 324, 159-169.
http://dx.doi.org/10.1016/j.gene.2003.09.031
[40] Xu, Y., Orozco, R., Wijeratne, E.M.K., Gunatilaka, A.A.L., Stock, S.P. and Molnár, I. (2008) Biosynthesis of the Cyclooligomer Depsipeptide Beauvericin, a Virulence Factor of the Entomopathogenic Fungus Beauveria bassiana. Chemistry & Biology, 15, 898-907.
http://dx.doi.org/10.1016/j.chembiol.2008.07.011
[41] Xiao, G., Ying, S.H., Zheng, P., Wang, Z.L., Zhang, S., Xie, X.Q., et al. (2012) Genomic Perspectives on the Evolution of Fungal Entomopathogenicity in Beauveria bassiana. Scientific Reports, 2, Article No. 483.
http://dx.doi.org/10.1038/srep00483
[42] Bye, N.J. and Charnley, A.K. (2008) Regulation of Cuticle-Degrading Subtilisin Proteases from the Entomopathogenic Fungi, Lecanicillium spp: Implications for Host Specificity. Archives of Microbiology, 189, 81-92.
http://dx.doi.org/10.1007/s00203-007-0296-8
[43] Tharanathan, R.N. and Kittur, F.S. (2003) Chitin—The Undisputed Biomolecule of Great Potential. Critical Reviews in Food Science and Nutrition, 43, 61-87.
http://dx.doi.org/10.1080/10408690390826455
[44] Seidl, V. (2008) Chitinases of Filamentous Fungi: A Large Group of Diverse Proteins with Multiple Physiological Functions. Fungal Biology Reviews, 22, 36-42.
http://dx.doi.org/10.1016/j.fbr.2008.03.002
[45] Lu, Z.X., Laroche, A. and Huang H.C. (2005) Isolation and Characterization of Chitinases from Verticillium lecanii. Canadian Journal Microbiology, 51, 1045-1055.
http://dx.doi.org/10.1139/w05-088
[46] St. Leger, R.J., Cooper, R.M. and Charnley, A.K. (1991) Characterization of Chitinase and Chitobiose Produced by the Entomopathogenic Fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 58, 415-426.
http://dx.doi.org/10.1016/0022-2011(91)90188-V
[47] Adams, D.J. (2004) Fungal Cell Wall Chitinases and Glucanases. Microbiology, 150, 2029-2035.
http://dx.doi.org/10.1099/mic.0.26980-0
[48] Henrissat, B. and Bairoch, A. (1993) New Families in the Classification of Glycosyl Hydrolases Based on Aminoacid Sequence Similarities. Biochemistry, 293, 781-788.
[49] Li, D.C. (2006) Review of Fungal Chitinases. Mycopathologia, 161, 345-360.
http://dx.doi.org/10.1007/s11046-006-0024-y
[50] Kezuka, Y., Ohishi, M., Itoh, Y., Watanabe, J., Mitsutomi, M., Watanebe, T., et al. (2006) Structural Studies of a Two- Domain Chitinase from Streptomyces griseus HUT6037. Journal of Molecular Biology, 358, 472-484.
http://dx.doi.org/10.1016/j.jmb.2006.02.013
[51] Sahai, A.S. and Manocha, M.S. (1993) Chitinases of Fungi and Plants: Their Involvement in Morphogenesis and Host- Parasite Interaction. FEMS Microbiology Reviews, 11, 317-338.
http://dx.doi.org/10.1111/j.1574-6976.1993.tb00004.x
[52] Prasanna, L., Eijsink, V.G.H., Meadow, R. and Gåseidnes, S. (2013) A Novel Strain of Brevibacillus laterosporus Pro- duces Chitinases That Contribute to Its Biocontrol Potential. Applied Microbiology Biotechnology, 97, 1601-1611.
http://dx.doi.org/10.1007/s00253-012-4019-y
[53] Barranco-Florido, E., Bustamante-Camilo, L., Mayorga-Reyes, L., González-Cervantes, R., Martínez-Cruz, P. and Azaola, A. (2009) β-N-Acetylglucosamidase Production by Lecanicillium lecanii ATCC 26854 by Solid-State Fermentation Utilizing Shrimp Shell. Interciencia, 34, 356-360.
[54] Bogo, M.R., Rota, C.A., Rota, H., Pinto Jr, H., Ocampos, M., Correa, C.T., et al. (1998) A Chitinase Encoding Gene (chit1 Gene) from the Entomopathogen Metarhizium anisopliae: Isolation and Characterization of Genomic and Full-Length cDNA. Current Microbiology, 37, 221-225.
http://dx.doi.org/10.1007/s002849900368
[55] Baratto, C.M., Dutra, V., Tomazzoni, J., Barbosa, L., Henning, M. and Schrank, A. (2006) Isolation, Characterization, and Transcriptional Analysis of the Chitinase chit2 Gene (DQ011663) from the Biocontrol Fungus Metarhizium anisopliae var. anisopliae. Current Microbiology, 53, 217-221.
http://dx.doi.org/10.1007/s00284-006-0078-6
[56] Boldo, J.T., Amaral, K.B., Junges, A., Pinto, P.M., Staats, C.C., Vainstein, M.H. et al. (2010) Evidence of Alternative Splicing of the chit2 Chitinase Gene from Metarhizium anisopliae. Gene, 462, 1-7.
http://dx.doi.org/10.1016/j.gene.2010.04.005
[57] da Silva, M.V., Santi, L., Staats, C.C., da Costa, A.M., Colodel, E.M., Driemeier, D., et al. (2005) Cuticle Induced Endo/Exoacting Chitinase CHIT30 from Metarhizium anisopliae Is Encoded by an Ortholog of the chit3 Gene. Research in Microbiology, 156, 382-392.
http://dx.doi.org/10.1016/j.resmic.2004.10.013
[58] Staats, C.C., Kmetzsch, L., Lubeck, I., Junges, A., Vainstein, M.H. and Schrank, A. (2013) Metarhizium anisopliae Chitinase CHIT30 Is Involved in Heat-Shock Stress and Contributes to Virulence against Dysdercus peruvians. Fungal Biology, 117, 137-144.
http://dx.doi.org/10.1016/j.funbio.2012.12.006
[59] Screen, S., Hu, G. and St. Leger., R.J. (2002) Transformants of Metarhizium anisopliae sf. anisopliae Overexpressing Chitinase from Metarhizium anisopliae sf. acridum Show Early Induction of Native Chitinase but Are Not Altered in Pathogenicity to Manduca sexta. Journal of Invertebrate Pathology, 78, 260-266.
http://dx.doi.org/10.1006/jipa.2001.5067
[60] Fang, W., Leng, B., Xiao, Y., Jin, K., Ma., J., Fan, Y., et al. (2005) Cloning of Beauveria bassiana Gene Bbchit1 and Its Application to Improve Fungal Strain Virulence. Applied and Environmental Microbiology, 71, 363-370.
[61] Fan, Y., Fang, W., Xiao, Y., Yang, X., Zhang, Y., Bidochka, M.J., et al. (2007) Directed Evolution for Increased Chitinase Activity. Applied Microbiology and Biotechnology, 76, 135-139.
http://dx.doi.org/10.1007/s00253-007-0996-7
[62] Fan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao, Y., et al. (2007) Increased Insect Virulence in Beauveria bassiana Strains Overexpressing an Engineered Chitinase. Applied and Environmental Microbiology, 73, 295-302.
http://dx.doi.org/10.1128/AEM.01974-06
[63] Fan, Y., Pei, X., Guo, S., Zhang, Y., Luo, Z., Liao, X., et al. (2010) Increased Virulence Using Engineered Protease-Chitin Binding Domain Hybrid Expressed in the Entomopathogenic Fungus Beauveria bassiana. Microbial Pathogenesis, 49, 376-380.
http://dx.doi.org/10.1016/j.micpath.2010.06.013
[64] Seidl, V., Huemer, B., Seiboth, B. and Kubicek, C.P. (2005) A Complete Survey of Trichoderma Chitinases Reveals Three Distinct Subgroups of Family 18 Chitinases. FEBS Journal, 272, 5923-5939.
http://dx.doi.org/10.1111/j.1742-4658.2005.04994.x
[65] Kaur, G. and Padmaja, V. (2009) Relationships among Activities of Extracellular Enzyme Production and Virulence against Helicoverpa armigera in Beauveria bassiana. Journal of Basic Microbiology, 49, 264-274.
http://dx.doi.org/10.1002/jobm.200800156
[66] Binod, P., Sukumaran, R.K., Shirke, S.V., Rajpur, J.C. and Pandey, A. (2007) Evaluation of Fungal Cultures Filtrate Containing Chitinase as a Biocontrol Agent against Helicoverpa ormigera. Journal of Applied Microbiology, 103, 1845-1852.
http://dx.doi.org/10.1111/j.1365-2672.2007.03428.x
[67] Ownley, B.H., Griffin, M.R., Klingeman, W.E., Gwinn, K.D., Moulton, J.K. and Pereira, R.M. (2008) Beauveria bassiana: Endophytic Colonization and Plant Disease Control. Journal of Invertebrate Pathology, 98, 267-270.
http://dx.doi.org/10.1016/j.jip.2008.01.010
[68] Kim, J.S., Roh, J.Y., Choi, J.Y., Wang, Y., Shim, H.J. and Je, Y.H. (2010) Correlation of the Aphicidal Activity of Beauveria bassiana SFB-205 Supernatant with Enzymes. Fungal Biology, 114, 120-128.
http://dx.doi.org/10.1016/j.mycres.2009.10.011
[69] Ali, S., Huang, Z. and Ren, S. (2010) Production of Cuticle Degrading Enzymes by Isaria fumosorosea and Their Evaluation as a Biocontrol Agent against Diamondback Moth. Journal of Pest Sciences, 83, 361-370.
http://dx.doi.org/10.1007/s10340-010-0305-6
[70] Shoaib, F., Jin, F.L., Muhammad, N., Ren, S.X. and Mubshar, H. (2012) Toxicity of Proteins Secreted by Entomopathogenic Fungi against Plutella xylostella (Lepidoptera: Plutellidae). International Journal of Agriculture and Biology, 14, 291-295.
[71] Renge, V.C., Khedkar, S.V. and Nandurkar, N.R. (2012) Enzyme Synthesis by Fermentation Method: A Review. Scientific Reviews and Chemical Communications, 2, 585-590.
[72] Oberoi, H.S., Chavan, Y., Bansai, S. and Dhillon, G.S. (2010) Production of Cellulases through Solid State Fermentation Using Kinnow Pulp as a Major Substrate. Food and Bioprocess Technology, 3, 528-536.
http://dx.doi.org/10.1007/s11947-008-0092-8
[73] Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A. and Madihah, M.S. (2013) Production of Cellulases and Xylanase by Aspergillus fumigatus SK1 Using Untreated Oil Palm Trunk through Solid State Fermentation. Process Biochemistry, 48, 1293-1302.
http://dx.doi.org/10.1016/j.procbio.2013.06.019
[74] Barranco-Florido, J.E., Alatorre-Rosas, R., Gutiérrez-Rojas, M., Viniegra-González, G. and Saucedo-Castañeda, G. (2002) Criteria for the Selection of Strains of Entomopathogenic Fungi Verticillium lecanii for Solid State Cultivation. Enzyme and Microbial Technology, 30, 910-915.
http://dx.doi.org/10.1016/S0141-0229(02)00032-7
[75] da Silva, L.C.A., Honorato, T.L., Franco, T.T. and Rodrigues, S. (2012) Optimization of Chitosanase Production by Trichoderma koningii sp. under Solid-State Fermentation. Food and Bioprocess Technology, 5, 1564-1572.
http://dx.doi.org/10.1007/s11947-010-0479-1
[76] Kim, J.S., Kassa, A., Skinner, M., Hata, T. and Parker, B.L. (2011) Production of Thermotolerant Entomopathogenic Fungal Conidia on Millet Grain. Journal of Industrial Microbiology and Biotechnology, 38, 697-704.
http://dx.doi.org/10.1007/s10295-010-0850-2
[77] Mascarin, G.M., Kobori, N.N., Quintela, E.D. and Delalibera Jr., I. (2013) The Virulence of Entomopathogenic fungi against Bemisia tabaci Biotype B (Hemiptera: Aleyrodidae) and Their Conidial Production Using Solid Substrate Fermentation. Biological Control, 66, 209-218.
[78] Erickson, B., Nelson, J.E. and Winters, P. (2012) Perspective on Opportunities in Industrial Biotechnology in Renewable Chemicals. Biotechnology Journal, 7, 176-185.
http://dx.doi.org/10.1002/biot.201100069
[79] de Bekker, C., Smith, P.B., Patterson, A.D. and Hughes, D.P. (2013) Metabolomics Reveals the Heterogeneous Secretome of Two Entomopathogenic Fungi to ex Vivo Cultured Insect Tissues. PloS ONE, 8, e70609.
http://dx.doi.org/10.1371/journal.pone.0070609

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.