Plasma Phospholipid Omega-3 Fatty Acids and Freshwater Fish Consumption in the Brazilian Amazon
Aline Philibert, Myriam Fillion, Jason Robert DeGuire, Hope Alberta Weiler, Carlos José Sousa Passos, Melanie Lemire, Donna Mergler
CINBIOSE, Université du Québec à Montréal (UQàM), Montréal, Canada.
CINBIOSE, Université du Québec à Montréal (UQàM), Montréal, Canada;Centre de recherche du CHU de Québec, CHUL, Axe Santé Publique et Pratiques Optimales en Santé, Québec, Canada..
CINBIOSE, Université du Québec à Montréal (UQàM), Montréal, Canada;Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, Brazil.
Department of Biology, University of Ottawa, Ottawa, Canada; CINBIOSE, Université du Québec à Montréal (UQàM), Montréal, Canada.
School of Dietetics and Human Nutrition, McGill University, Montreal, Canada.
DOI: 10.4236/fns.2013.49A1021   PDF    HTML     4,908 Downloads   7,194 Views   Citations

Abstract

Background: Amazonian riverside communities consume large quantities of freshwater fish, comparable to marine fish consumption of Inuit, Scandinavian and Japanese populations. Few studies have considered the relation of high freshwater fish consumption and intake of omega-3 fatty acids (FA). Objective: The objective of the present study was to determine the profile of the concentrations of plasma phospholipid FAs and its relation with freshwater fish intake in 12 riverside communities in the Tapajós River basin (State of Pará, Brazilian Amazon). Design: This cross-sectional study included 333 adults (15 - 86 years old). Fish meal frequency was determined using a 7-day interview-administered dietary recall questionnaire. Fish were categorized as piscivorous and non-piscivorous fish on trophic level. Plasma phospholipid FAs were measured by capillary gas-liquid chromatography. Results: Participants consumed 5 to 6 fish meals a week, with twice as many non-piscivorous fish than piscivorous fish (4.4 fish/week vs 2.2 fish/week, respectively). The omega-3 FA levels in plasma phospholipids were low (EPA + DHA = 31.21 mg/L; %EPA + DHA = 2.59%). Omega-3 FAs increased with frequency of fish intake, and particularly with piscivorous fish, controlling for sociodemographic, anthropometric and lifestyle characteristics. DHA levels were greater in women than in men. Conclusions: Omega-3 FA in this Amazonian population increased with fish consumption, but although they consumed freshwater fish almost daily, the concentrations of omega-3 FA were relatively low and comparable to fish-eater communities for which fish is not a dietary mainstay. It is possible that nutrients present in marine, but not in certain freshwater fish species, may facilitate absorption of omega-3 FA. Sex and/or gender differences must be taken into account when assessing the relationship between fish consumption and plasma phospholipid omega-3 FA levels.


Share and Cite:

A. Philibert, M. Fillion, J. DeGuire, H. Weiler, C. Passos, M. Lemire and D. Mergler, "Plasma Phospholipid Omega-3 Fatty Acids and Freshwater Fish Consumption in the Brazilian Amazon," Food and Nutrition Sciences, Vol. 4 No. 9A, 2013, pp. 137-149. doi: 10.4236/fns.2013.49A1021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Anttolainen, L. M. Valsta, G. Alfthan, P. Kleemola, I. Salminen and M. Tamminen, “Effect of Extreme Fish Consumption on Dietary and Plasma Antioxidant Levels and Fatty Acid Composition,” European Journal of Clinical Nutrition, Vol. 50, No. 11, 1996, pp. 741-746.
[2] A. Hjartaker, E. Lund and K. S. Bjerve, “Serum Phospholipid Fatty Acid Composition and Habitual Intake of Marine Foods Registered by a Semi-Quantitative Food Frequency Questionnaire,” European Journal of Clinical Nutrition, Vol. 51, No. 11, 1997, pp. 736-742. doi:10.1038/sj.ejcn.1600475
[3] P. Amiano, M. Dorronsoro, M. de Renobales, J. C. Ruiz de Gordoa and I. Irigoien, “Very-Long-Chain Omega-3 Fatty Acids as Markers for Habitual Fish Intake in a Population Consuming Mainly Lean Fish: The EPIC Cohort of Gipuzkoa. European Prospective Investigation into Cancer and Nutrition,” European Journal of Clinical Nutrition, Vol. 55, No. 10, 2001, pp. 827-832. doi:10.1038/sj.ejcn.1601242
[4] E. Dewailly, C. Blanchet, S. Gingras, S. Lemieux and B. J. Holub, “Cardiovascular Disease Risk Factors and n-3 Fatty Acid Status in the Adult Population of James Bay Cree,” The American Journal of Clinical Nutrition, Vol. 76, No. 1, 2002, pp. 85-92.
[5] E. Dewailly, C. Blanchet, S. Lemieux, L. Sauve, S. Gingras, P. Ayotte and B. J. Holub, “n-3 Fatty Acids and Cardiovascular Disease Risk Factors among the Inuit of Nunavik,” The American Journal of Clinical Nutrition, Vol. 74, No. 4, 2001, pp. 464-473.
[6] E. E. Dewailly, C. Blanchet, S. Gingras, S. Lemieux, L. Sauve, J. Bergeron and B. J. Holub, “Relations between n-3 Fatty Acid Status and Cardiovascular Disease Risk Factors among Quebecers,” The American Journal of Clinical Nutrition, Vol. 74, No. 5, 2001, pp. 603-611.
[7] A. Philibert, C. Vanier, N. Abdelouahab, H. M. Chan and D. Mergler, “Fish Intake and Serum Fatty Acid Profiles from Freshwater Fish,” The American Journal of Clinical Nutrition, Vol. 84, No. 6, 2006, pp. 1299-1307.
[8] K. Wakai, Y. Ito, M. Kojima, S. Tokudome, K. Ozasa, Y. Inaba, K. Yagyu and A. Tamakoshi, “Intake Frequency of Fish and Serum Levels of Long-Chain n-3 Fatty Acids: A Cross-Sectional Study within the Japan Collaborative Cohort Study,” Journal of Epidemiology, Vol. 15, No. 6, 2005, pp. 211-218. doi:10.2188/jea.15.211
[9] D. C. Cole, J. Sheeshka, E. J. Murkin, J. Kearney, F. Scott, L. A. Ferron and J. P. Weber, “Dietary Intakes and Plasma Organochlorine Contaminant Levels among Great Lakes Fish Eaters,” Archives of Environmental Health, Vol. 57, No. 5, 2002, pp. 496-509. doi:10.1080/00039890209601443
[10] H. Chung, J. A. Nettleton, R. N. Lemaitre, R. G. Barr, M. Y. Tsai, R. P. Tracy and D. S. Siscovick, “Frequency and Type of Seafood Consumed Influence Plasma (n-3) Fatty Acid Concentrations,” Journal of Nutrition, Vol. 138, No. 12, 2008, pp. 2422-2427. doi:10.3945/jn.108.089631
[11] A. A. Welch, S. A. Bingham, J. Ive, M. D. Friesen, N. J. Wareham, E. Riboli and K. T. Khaw, “Dietary Fish Intake and Plasma Phospholipid n-3 Polyunsaturated Fatty Acid Concentrations in Men and Women in the European Prospective Investigation into Cancer-Norfolk United Kingdom Cohort,” The American Journal of Clinical Nutrition, Vol. 84, No. 6, 2006, pp. 1330-1339.
[12] M. Saadatian-Elahi, N. Slimani, V. Chajes, M. Jenab, J. Goudable, C. Biessy, P. Ferrari, G. Byrnes, P. Autier, P. H. Peeters, M. Ocke, B. Bueno de Mesquita, I. Johansson, G. Hallmans, J. Manjer, E. Wirfalt, C. A. Gonzalez, C. Navarro, C. Martinez, P. Amiano, L. R. Suarez, E. Ardanaz, A. Tjonneland, J. Halkjaer, K. Overvad, M. U. Jakobsen, F. Berrino, V. Pala, D. Palli, R. Tumino, P. Vineis, M. Santucci de Magistris, E. A. Spencer, F. L. Crowe, S. Bingham, K. T. Khaw, J. Linseisen, S. Rohrmann, H. Boeing, U. Noethlings, K. S. Olsen, G. Skeie, E. Lund, A. Trichopoulou, E. Oustoglou, F. ClavelChapelon and E. Riboli, “Plasma Phospholipid Fatty Acid Profiles and Their Association with Food Intakes: Results from a Cross-Sectional Study within the European Prospective Investigation into Cancer and Nutrition,” The American Journal of Clinical Nutrition, Vol. 89, No. 1, 2009, pp. 331-346. doi:10.3945/ajcn.2008.26834
[13] A. W. Turunen, S. Mannisto, H. Kiviranta, J. Marniemi, A. Jula, P. Tiittanen, L. Suominen-Taipale, T. Vartiainen and P. K. Verkasalo, “Dioxins, Polychlorinated Biphenyls, Methyl Mercury and Omega-3 Polyunsaturated Fatty Acids as Biomarkers of Fish Consumption,” European Journal of Clinical Nutrition, Vol. 64, No. 3, 2010, pp. 313323. doi:10.1038/ejcn.2009.147
[14] K. Mina, L. Fritschi and M. Knuiman, “A Valid Semiquantitative Food Frequency Questionnaire to Measure Fish Consumption,” European Journal of Clinical Nutrition, Vol. 61, No. 8, 2007, pp. 1023-1031. doi:10.1038/sj.ejcn.1602617
[15] A. J. Parkinson, A. L. Cruz, W. L. Heyward, L. R. Bulkow, D. Hall, L. Barstaed and W. E. Connor, “Elevated Concentrations of Plasma Omega-3 Polyunsaturated Fatty Acids among Alaskan Eskimos,” The American Journal of Clinical Nutrition, Vol. 59, No. 2, 1994, pp. 384-388.
[16] L. Dahl, C. A. Maeland and T. Bjorkkjaer, “A Short Food Frequency Questionnaire to Assess Intake of Seafood and n-3 Supplements: Validation with Biomarkers,” Nutrition Journal, Vol. 10, 2011, p. 127.
[17] A. L. Brantsaeter, M. Haugen, Y. Thomassen, D. G. Ellingsen, T. A. Ydersbond, T. A. Hagve, J. Alexander and H. M. Meltzer, “Exploration of Biomarkers for Total Fish Intake in Pregnant Norwegian Women,” Public Health Nutrition, Vol. 13, No. 1, 2010, pp. 54-62. doi:10.1017/S1368980009005904
[18] C. Godin, B. Shatenstein, G. Paradis and T. Kosatsky, “Absence of Cardiovascular Benefits and Sportfish Consumption among St. Lawrence River Anglers,” Environmental Research, Vol. 93, No. 3, 2003, pp. 241-247. doi:10.1016/j.envres.2003.07.006
[19] G. Li, A. J. Sinclair and D. Li, “Comparison of Lipid Content and Fatty Acid Composition in the Edible Meat of Wild and Cultured Freshwater and Marine Fish and Shrimps from China,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 5, 2011, pp. 1871-1881. doi:10.1021/jf104154q
[20] M. E. Turyk, S. P. Bhavsar, W. Bowerman, E. Boysen, M. Clark, M. Diamond, D. Mergler, P. Pantazopoulos, S. Schantz and D. O. Carpenter, “Risks and Benefits of Consumption of Great Lakes Fish,” Environmental Health Perspectives, Vol. 120, No. 1, 2012, pp. 11-18. doi:10.1289/ehp.1003396
[21] M. C. Belanger, M. E. Mirault, E. Dewailly, M. Plante, L. Berthiaume, M. Noel and P. Julien, “Seasonal Mercury Exposure and Oxidant-Antioxidant Status of James Bay Sport Fishermen,” Metabolism: Clinical and Experimental, Vol. 57, No. 5, 2008, pp. 630-636. doi:10.1016/j.metabol.2007.12.006
[22] E. da Silva Brabo, E. de Oliveira Santos, I. M. de Jesus, A. F. Mascarenhas and K. de Freitas Faial, “Mercury Contamination of Fish and Exposures of an Indigenous Community in Para State, Brazil,” Environmental Research, Vol. 84, No. 3, 2000, pp. 197-203. doi:10.1006/enrs.2000.4114
[23] J. Dolbec, D. Mergler, F. Larribe, M. Roulet, J. Lebel and M. Lucotte, “Sequential Analysis of Hair Mercury Levels in Relation to Fish Diet of an Amazonian Population, Brazil,” The Science of the Total Environment, Vol. 271, No. 1-3, 2001, pp. 87-97. doi:10.1016/S0048-9697(00)00835-4
[24] J. G. Dorea, “Fish Are Central in the Diet of Amazonian Riparians: Should We Worry about Their Mercury Concentrations?” Environmental Research, Vol. 92, No. 3, 2003, pp. 232-244. doi:10.1016/S0013-9351(02)00092-0
[25] C. J. Passos, D. S. Da Silva, M. Lemire, M. Fillion, J. R. Guimaraes, M. Lucotte and D. Mergler, “Daily Mercury Intake in Fish-Eating Populations in the Brazilian Amazon,” Journal of Exposure Science & Environmental Epidemiology, Vol. 18, No. 1, 2008, pp. 76-87. doi:10.1038/sj.jes.7500599
[26] C. J. Passos, D. Mergler, M. Lemire, M. Fillion and J. R. Guimaraes, “Fish Consumption and Bioindicators of Inorganic Mercury Exposure,” The Science of the Total Environment, Vol. 373, No. 1, 2007, pp. 68-76. doi:10.1016/j.scitotenv.2006.11.015
[27] C. J. Passos and D. Mergler, “Human Mercury Exposure and Adverse Health Effects in the Amazon: A Review,” Cad Saude Publica, Vol. 24 Suppl. 4, 2008, pp. s503s520. doi:10.1177/1090198108320357
[28] F. Mertens, J. Saint-Charles, M. Lucotte and D. Mergler, “Emergence and Robustness of a Community Discussion Network on Mercury Contamination and Health in the Brazilian Amazon,” Health Education and Behavior, Vol. 35, No. 4, 2008, pp. 509-521.
[29] M. Lucotte, R. Davidson, D. Mergler, J. St-Charles and J. R. D. Guimaraes, “Human Exposure to Mercury as a Consequence of Landscape Management and Socio-Economic Behaviors,” Seventh International Conference on Mercury as a Global Pollutant, Ljubljana, 28 June-2 July 2004, pp. 668-672.
[30] M. Lemire, D. Mergler, G. Huel, C. J. Passos, M. Fillion, A. Philibert, J. R. Guimaraes, I. Rheault, J. Borduas and G. Normand, “Biomarkers of Selenium Status in the Amazonian Context: Blood, Urine and Sequential Hair Segments,” Journal of Exposure Science & Environmental Epidemiology, Vol. 19, No. 2, 2009, pp. 213-222. doi:10.1038/jes.2008.14
[31] C. J. Passos, D. Mergler, E. Gaspar, S. Morais, M. Lucotte, F. Larribe, R. Davidson and S. de Grosbois, “Eating tropical Fruit Reduces Mercury Exposure from Fish Consumption in the Brazilian Amazon,” Environmental Research, Vol. 93, No. 2, 2003, pp. 123-130. doi:10.1016/S0013-9351(03)00019-7
[32] E. Ferreira, J. Zuanon and G. Santos, “Peixes Comerciais do Médio Amazonas,” Regi?o de Santarém (PA), Brasília, 1998.
[33] I. Bondia-Pons, S. Morera-Pons, A. I. Castellote and M. C. Lopez-Sabater, “Determination of Phospholipid Fatty Acids in Biological Samples by Solid-Phase Extraction and Fast Gas Chromatography,” Journal of Chromatography A, Vol. 1116, No. 1-2, 2006, pp. 204-208. doi:10.1016/j.chroma.2006.03.023
[34] J. Folch, M. Lees and G. H. Sloane Stanley, “A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues,” The Journal of Biological Chemistry, Vol. 226, No. 1, 1957, pp. 497-509.
[35] F. L. Crowe, C. M. Skeaff, T. J. Green and A. R. Gray, “Serum n-3 Long-Chain PUFA Differ by Sex and Age in a Population-Based Survey of New ZEALAND Adolescents and Adults,” British Journal of Nutrition, Vol. 99, No. 1, 2008, pp. 168-174. doi:10.1017/S000711450779387X
[36] A. J. Inhamuns and M. R. Bueno Franco, “Composition of Total, Neutral, and Phospholipids in Mapara (Hypophthalmus sp.) from the Brazilian Amazonian Area,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 10, 2001, pp. 4859-4863. doi:10.1021/jf0100393
[37] M. Kainz, M. T. Arts and A. Mazumder, “Essential Versus Potentially Toxic Dietary Substances: A Seasonal Comparison of Essential Fatty Acids and Methyl Mercury Concentrations in the Planktonic Food Web,” Environmental Pollution, Vol. 155, No. 2, 2008, pp. 262-270. doi:10.1016/j.envpol.2007.11.021
[38] M. Kainz, K. Telmer and A. Mazumder, “Bioaccumulation Patterns of Methyl Mercury and Essential Fatty Acids in Lacustrine Planktonic Food Webs and Fish,” The Science of the Total Environment, Vol. 368, No. 1, 2006, pp. 271-282. doi:10.1016/j.scitotenv.2005.09.035
[39] K. R. Mahaffey, “Fish and Shellfish as Dietary Sources of Methylmercury and the Omega-3 Fatty Acids, Eicosahexaenoic Acid and Docosahexaenoic Acid: Risks and Benefits,” Environmental Research, Vol. 95, No. 3, 2004, pp. 414-428. doi:10.1016/j.envres.2004.02.006
[40] K. R. Mahaffey, R. P. Clickner and R. A. Jeffries, “Methylmercury and Omega-3 Fatty Acids: Co-Occurrence of Dietary Sources with Emphasis on Fish and Shellfish,” Environmental Research, Vol. 107, No. 1, 2008, pp. 2029. doi:10.1016/j.envres.2007.09.011
[41] D. Pella, G. Dubnov, R. B. Singh, R. Sharma, E. M. Berry and O. Manor, “Effects of an Indo-Mediterranean Diet on the Omega-6/Omega-3 Ratio in Patients at High Risk of Coronary Artery Disease: The Indian Paradox,” World Review of Nutrition and Dietetics, Vol. 92, No. 2003, pp. 74-80.
[42] T. A. Sanders, “Polyunsaturated Fatty Acids in the Food Chain in Europe,” The American Journal of Clinical Nutrition, Vol. 71, Suppl. 1, 2000, pp. 176S-178S.
[43] M. Sugano and F. Hirahara, “Polyunsaturated Fatty Acids in the Food Chain in Japan,” The American Journal of Clinical Nutrition, Vol. 71, Suppl. 1, 2000, pp. 189S196S.
[44] A. P. Simopoulos, “Evolutionary Aspects of Diet, the Omega-6/Omega-3 Ratio and Genetic Variation: Nutritional Implications for Chronic Diseases,” Biomedicine & Pharmacotherapy, Vol. 60, No. 9, 2006, pp. 502-507. doi:10.1016/j.biopha.2006.07.080
[45] G. C. Burdge and P. C. Calder, “Conversion of AlphaLinolenic Acid to Longer-Chain Polyunsaturated Fatty Acids in Human Adults,” Reproduction Nutrition Development, Vol. 45, No. 5, 2005, pp. 581-597. doi:10.1051/rnd:2005047
[46] G. C. Burdge, A. E. Jones and S. A. Wootton, “Eicosapentaenoic and Docosapentaenoic Acids Are the Principal Products of Alpha-Linolenic Acid Metabolism in Young Men,” British Journal of Nutrition, Vol. 88, No. 4, 2002, pp. 355-363. doi:10.1079/BJN2002662
[47] G. C. Burdge and S. A. Wootton, “Conversion of AlphaLinolenic Acid to Eicosapentaenoic, Docosapentaenoic and Docosahexaenoic Acids in Young Women,” British Journal of Nutrition, Vol. 88, No. 4, 2002, pp. 411-420.
doi:10.1079/BJN2002689
[48] H. Gerster, “Can Adults Adequately Convert Alpha-Linolenic Acid (18:3n-3) to Eicosapentaenoic Acid (20:5n-3) and Docosahexaenoic Acid (22:6n-3)?” International Journal for Vitamin and Nutrition Research, Vol. 68, No. 3, 1998, pp. 159-173.
[49] R. J. Pawlosky, J. R. Hibbeln, Y. Lin, S. Goodson, P. Riggs, N. Sebring, G. L. Brown and N. Salem Jr., “Effects of Beefand Fish-Based Diets on the Kinetics of n-3 Fatty Acid Metabolism in Human Subjects,” The American Journal of Clinical Nutrition, Vol. 77, No. 3, 2003, pp. 565-572.
[50] J. A. Conquer and B. J. Holub, “Dietary Docosahexaenoic Acid as a Source of Eicosapentaenoic Acid in Vegetarians and Omnivores,” Lipids, Vol. 32, No. 3, 1997, pp. 341345. doi:10.1007/s11745-997-0043-y
[51] K. D. Stark and B. J. Holub, “Differential Eicosapentaenoic Acid Elevations and Altered Cardiovascular Disease Risk Factor Responses after Supplementation with Docosahexaenoic Acid in Postmenopausal Women Receiving and Not Receiving Hormone Replacement Therapy,” The American Journal of Clinical Nutrition, Vol. 79, No. 5, 2004, pp. 765-773.
[52] E. J. Giltay, L. J. Gooren, A. W. Toorians, M. B. Katan and P. L. Zock, “Docosahexaenoic Acid Concentrations Are Higher in Women than in Men Because of Estrogenic Effects,” The American Journal of Clinical Nutrition, Vol. 80, No. 5, 2004, pp. 1167-1174.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.