Antioxidant and Anti-Inflammatory Effects of Peanut Skin Extracts

DOI: 10.4236/fns.2013.48A003   PDF   HTML     5,309 Downloads   8,974 Views   Citations

Abstract

Peanut skins are regarded as a low economic value by-product of the peanut industry; however, they contain high levels of bioactive compounds including catechins and procyanidins, which are known for their health-promoting properties. The in vitro antioxidant activity of peanut skin extracts (PSE) has been reported but the associated anti-inflammatory properties have not been widely examined. This study investigated the anti-inflammatory effects of PSE on the pro-inflammatory enzyme, Cyclooxygenase-2 (COX-2) protein expression, on its downstream product, prostaglandin E2 (PGE2), and on nitrous oxide (NO) levels. Defatted peanut skins were extracted using two aqueous solvent mixtures (50% acetone and 90% ethanol), in order to compare the effects of the two solvent systems on antioxidant and anti-inflammatory properties. PSE antioxidant activity was determined by the hydrophilic oxygen radical absorbance capacity (H-ORAC) assay, while total phenolics were determined by the Folin-Ciocalteu assay and flavan-3-ols and procyanidins were quantified by HPLC. Acetone extracted PSE (A-PSE) exhibited numerically, but not statistically higher H-ORAC and total phenolic values than the ethanol extracted PSE (E-PSE) (1836 μmol Trolox/100 g and 67.9 mg GAE/g, and 1830 μmol Trolox/100 g and 51.8 GAE/g respectively). A-PSE also had higher levels of flavan-3-ols and procyanidins than E-PSE. RAW 264.7 cells were pretreated with 1.0%, 2.5% and 5.0% (v/v) of A-PSE or E-PSE and induced with the inflammatory marker, lipopolysaccharide (LPS) for 12 hours. COX-2 protein expression, measured by Western blotting was significantly (p < 0.05) inhibited by A-PSE and E-PSE at 2.5% and 5.0% concentrations. PGE2 and NO levels measured by ELISA, were significantly (p < 0.05) decreased with increasing added levels of A-PSE and E-PSE suggesting that A-PSE and E-PSE not also possess similar antioxidant properties, but also exhibit similar anti-inflammatory effects.

Share and Cite:

W. Lewis, G. Harris, T. Sanders, B. White and L. Dean, "Antioxidant and Anti-Inflammatory Effects of Peanut Skin Extracts," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 22-32. doi: 10.4236/fns.2013.48A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. H. Sanders, R. W. McMichael and K. W. Hendrix, “Occurrence of Resveratrol in Edible Peanuts,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 4, 2000, pp. 1243-1246. doi:10.1021/jf990737b
[2] J. Yu, M. Ahmedna and I. Goktepe, “Effects of Processing Methods and Extraction Solvents on Concentration and Antioxidant Activity of Peanut Skin Phenolics,” Food Chemistry, Vol. 90, No. 1-2, 2005, pp. 199-206. doi:10.1080/10408390701640718
[3] B. W. Bolling, D. L. McKay and J. B. Blumberg, “The Phytochemical Composition and Antioxidant Actions of Tree Nuts,” Asia Pacific Journal of Clinical Nutrition, Vol. 19, No. 1, 2010, pp. 117-123.
[4] P. J. Sarnoski, R. R. Boyer and S. F. O’Keefe, “Applications of Proanthocyanindins from Peanut Skins as a Natural Yeast Inhibitory Agent,” Journal of Food Science, Vol. 77, No. 4, 2012, pp. M242-M249.
[5] M. L. D. L. Francisco and A. V. A. Resurreccion, “Functional Components of Peanuts,” Critical Reviews in Food Science and Nutrition, Vol. 48, No. 8, 2008, pp. 715-746. doi:10.1080/10408390701640718
[6] Y. Yilmaz and R. T. Toledo, “Oxygen Radical Absorbance Capacities of Grape/Wine Industry Byproducts and Effect of Solvent Type on Extraction of Grape Seed Polyphenols,” Journal of Food Composition and Analysis, Vol. 19, No. 1, 2006, pp. 41-48. doi:10.1016/j.jfca.2004.10.009
[7] G. M. Hill, “Peanut By-Products Fed to Cattle,” The Veterinary Clinics of North America, Food Animal Practices, Vol. 18, No. 2, 2002, pp. 295-315.
[8] V. Nepote, N. Grosso and C. Guzman, “Extraction of Antioxidant Components from Peanut Skins,” Grasas y Aceites, Vol. 53, No. 4, 2002, pp. 391-395. doi:10.3989/gya.2002.v53.i4.335
[9] V. Nepote, N. Grosso and C. Guzman, “Optimization of Extraction of Antioxidants from Peanut Skins,” Journal of the Science of Food and Agriculture, Vol. 85, No. 1, 2005, pp. 33-38. doi:10.1002/jsfa.1933
[10] H. Van Ha, J. Pokorny and H. Sakurai, “Peanut Skin Antioxidants,” Journal of Food Lipids, Vol. 14, No. 3, 2007, pp. 298-314.
[11] T. Ballard, P. Mallikarjunan, K. Zhou and S. O’Keefe, “Optimizing the Extraction of Phenolic Antioxidants from Peanut Skins Using Response Surface Methodology,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 8, 2009, pp. 3064-3072. doi:10.1021/jf8030925
[12] P. Needleman, “Arachidonic Acid Metabolims,” Annual Review of Biochemistry, Vol. 55, 1986, pp. 69-102. doi:10.1146/annurev.bi.55.070186.000441
[13] J. P. Portanova, Y. Zhang, G. D. Anderson, S. D. Hauser, J. L. Masferrer, K. Seibert, S. A. Gregory and P. C. Isakson, “Selective Neutralization of Prostaglandin E2 Blocks Inflammation, Hyperalgesia, and Interleukin 6 Production in Vivo,” Journal of Experimental Medicine, Vol. 184, No. 3, 1996, pp. 883-891. doi:10.1084/jem.184.3.883
[14] M. Hamberg and B. Samuelsson, “On the Metabolism of Prostaglandins E1 and E2 in Man,” Journal of Biological Chemistry, Vol. 246, No. 22, 1971, pp. 6713-6721. http://www.jbc.org/content/246/22/6713.full.pdf+html
[15] J. R. Vane, Y. S. Bakhle and R. M. Botting, “Cyclooxygenases 1 and 2,” Annual Review of Pharmacology and Toxicology, Vol. 38, 1998, pp. 97-120. doi:10.1146/annurev.pharmtox.38.1.97
[16] C. J. Huang and M. C. Wu, “Differential Effects of Food Traditionally Regarded as ‘Heating’ and ‘Cooling’ on Prostaglandin E2 Production by a Macrophage Cell Line,” Journal of Biomedical Science, Vol. 9, No. 6, 2002, pp. 595-606. doi:10.1007/BF02254987
[17] A. Escarpa and M. C. Gonzales, “An Overview of Analytical Chemistry of Phenolic Compounds in Foods,” Critical Reviews in Analytical Chemistry, Vol. 31, No. 2, 2001, pp. 57-139. doi:10.1080/20014091076695
[18] B. Halliwell and M. Whitman, “Measuring Reactive Species and Oxidative Damage and in vivo and Cell Culture: How Should You Do It and What Do the Results Mean?” British Journal of Pharmacology, Vol. 246, No. 2, 2004, pp. 231-255.
[19] X. Han, T. Shen and H. Lou, “Dietary Polyphenols and Their Biological Significance,” International Journal of Molecular Science, Vol. 8, No. 9, 2007, pp. 950-988. doi:10.3390/i8090950
[20] M. Bhaskaran, S. Shukla, J. K. Srivastava and S. Gupta, “Chamomile: An Anti-inflammatory Agent Inhibits Inducible Nitric Oxide Synthase Expression by Blocking RelA/ p65 Activity,” International Journal of Molecular Medicine, Vol. 26, No. 6, 2010, pp. 935-940. doi:10.3892/ijmm_00000545
[21] M. L. Hu, “Dietary Polyphenols as Antioxidants and Anticancer Agents: More Questions than Answers,” Chang Guang Medical Journal, Vol. 34, No. 5, 2011, pp. 449460. http://memo.cgu.edu.tw/cgmj/3405/340501.pdf
[22] K. E. Constanza, B. L. White, J. P. Davis, T. H. Sanders and L. L. Dean, “Value-Added Processing of Peanut Skins: Antioxidant Capacity, Total Phenolics, and Procyanidin Content of Spray-Dried Extracts,” Journal of Agricultural and Food Chemistry, Vol. 60, No. 43, 2012, pp. 1077610783. doi:10.1021/jf3035258
[23] V. L. Singleton and J. A. Rossi, “Colorimetry of Total Phenolics with Phosphomolybdic-phosphotungstic Acid Reagents,” American Journal of Enology and Viticulture, Vol. 16, No. 3, 1965, pp. 144-158. http://www.ajevonline.org/content/16/3/144.full.pdf+html
[24] R. L. Prior, H. Hoang, L. Gu, X. Wu, M. Bacchiocca, L. Howard, M. Hampsch-Woodill, D. Huang, B. Ou and R. Jacob, “Assay for Hydrophilic and Lipophilic Antioxidant Capacity (Oxygen Radical Absorbance Capacity (ORACFL)) of Plasma and Other Biological and Food Samples,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 11, 2003, pp. 3273-3279. doi:10.1021/jf0262256
[25] T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays.” Journal of Immunological Methods, Vol. 65, No. 1-2, 1983, pp. 55-63. doi:10.1016/0022-1759(83)90303-4
[26] A. Campos-Neto, P. Ovendale, T. Bement, T. A. Koppi, W. C. Fanslow, M. A. Rossi and M. R. Alderson, “CD40 Ligand is not Essential of the Development of Cell Mediated Immunity and Resistance to Mycobacterium tuberculosis,” Journal of Immunology, Vol. 160, No. 5, 1998, pp. 2037-2041. http://www.jimmunol.org/content/160/5/2037.full
[27] S. Y. Chaea, M. Lee, S. W. Kim and Y. H. Bae, “Protection of Insulin Secreting Cells from Nitric Oxide Induced Cellular Damage by Crosslinked Hemoglobin,” Biomaterials, Vol. 25, No. 5, 2004, pp. 843-850. doi:10.1016/S0142-9612(03)00605-7
[28] S. A. Lazarus, G. E. Adamson, J. F. Hammerstone and H. H. Schmitz, “High-Performance Liquid Chromatography/ Mass Spectrometry Analysis of Proanthocyanidins in Food and Beverages,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 9, 1999, pp. 3693-3701. doi:10.1021/jf9813642
[29] M. Monagas, I. Garrido, R. Lebron-Aguilar, M. C. GomezCordoves, A. Rybarczyk, R. Amarowicz and B. Bartolome, “Comparative Flavan-3-ol Profile and Antioxidant Capacity of Roasted Peanut, Hazelnut, and Almond Skins,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 22, 2009, pp. 10590-10599. doi:10.1021/jf901391a
[30] P. J. Sarnoiski, J. V. Johnson, K. A. Reed, J. M. Tanko and S. F. O’Keefe, “Separation and Characterization of Proanthocyanidins in Virginia Type Peanut Skins by LCMSn,” Food Chemistry, Vol. 131, No. 3, 2012, pp. 927939. doi:10.1016/j.foodchem.2011.09.081
[31] G. K. Jayaprakasha, T. Selvi and K. K. Sakariah, “Antibacterial and Antioxidant Activities of Grape (Vitis vinifera) Seed Extracts,” Food Research International, Vol. 36, No. 2, 2003, pp. 117-122.
[32] S. Kallithraka, C. Garcia-Viguera, P. Bridle and J. Bakker, “Survery of Solvents for the Extraction of Grape Seed Phenolics,” Phytochemical Analysis, Vol. 6, No. 5, 1995, pp. 265-267. doi:10.1002/pca.2800060509
[33] J. F. Hammerstone, S. A. Lazarus, A. E. Mitchell, R. Rucker and H. H. Schmitz, “Identification of Procyanidins in Cocoa (Theobroma cacao) and Chocolate Using HighPerformance Liquid Chromatography/Mass Spectrometry,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 2, 1999, pp. 490-496. doi:10.1021/jf980760h
[34] J. Yu, M. Ahmedna, I. Goktepe and J. Dai, “Peanut Skin Procyanidins: Composition and Antioxidant Activities as Affected by Processing,” Journal of Food Composition and Analysis, Vol. 19, No. 4, 2006, pp. 364-371. doi:10.1016/j.jfca.2005.08.003
[35] J. J. Karchesy and W. W. Hemingway, “Condensed Tannins: (4 β→8;2 β→O→7)-Linked Procyanidins in Arachis hypogaea L,” Journal of Agricultural and Food Chemistry, Vol. 34, No. 6, 1986, pp. 966-970. doi:10.1021/jf00072a009
[36] H. Lou, Y. Ymazaki, T. Sasaki, M. Uchida, H. Tanaka and S. Oka, “A-Type Proanthocyanidins from Peanut Skins,” Phytochemistry, Vol. 51, No. 2, 1999, pp. 297-308.
[37] X. Wu, G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt and R. L. Prior, “Lipophilic and Hyrophilic Antioxidant Capacities of Common Foods in the United States,” Journal of Agricultural and Food Chemistry, Vol. 42, No. 12, 2004, pp. 4026-4037. doi:10.1021/jf049696w
[38] R. L. Prior, X. Wu and K. Schaich, “Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 10, 2005, pp. 4290-4302. doi:10.1021/jf0502698
[39] E. Granstrom, M. Hamberg, G. Hansson and H. Kindahl, “Chemical Instability of 15-Keto-13,14-dihydro-PGE2: The Reason for Low Assay Reliability,” Prostaglandins, Vol. 19, No. 6, 1980, pp. 933-945.
[40] Y. Liang, Y. Huang, S. Tsai, S. Lin-Shiau, C. Chen and L. Lin, “Supression of Inducible Cyclooxygenase and Inducible Nitric Oxide Synthase by Apigenin and Related Flavonoids in Mouse Macrophages,” Carcinogenisis, Vol. 20, No. 10, 1999, pp. 1945-1952. http://carcin.oxfordjournals.org/content/20/10/1945.full.pdf
[41] J.-C. Cheng, L.-S Kan, J.-T. Chen, L.-G. Chen, H.-C. Lu, S.-M. Lin, S.-H. Wang, K.-H. Yang and R. Y.-Y. Chiou, “Detection of Cyanidin in Different-colored Peanut Testae and Identification of Peanut Cyanidin 3-Sambubioside,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 19, 2009, pp. 8805-8811. doi:10.1021/jf902512k
[42] Y. S. Chi, B. S. Cheon and H. P. Kim, “Effect of Wogonin, a Plant Flavone from Scutellaria radix, on the Suppression of Cyclooygenase and the Induction of Inducible Nitric Oxide Synthase in Lipopolysaccharide-Treated RAW 264.7 Cells,” Biochemical Pharmacology, Vol. 61, No. 10, 2001, pp. 1195-1203.
[43] A. Murakami, Y. Nakamura, T. Torikai, T. Koshiba, K. Koshimizu, S. Kuwahara, T. Yasuo, K. Ogawa, M. Yano, H. Tokuda, H. Nishino, Y. Mimaki, Y. Sahida, S. Kitanaka and H. Ohigashi, “Inhibitory Effect of Citrus Nobiletin on Phormol Ester-Induced Skin Inflammation, Oxidative Stress, and Tumor Promotion in Mice,” Cancer Research, Vol. 60, No. 18, 2000, pp. 5059-5066. http://cancerres.aacrjournals.org/content/60/18/5059
[44] K. F. A. Soliman and E. A. Mazzio, “In Vitro Attenuation of Nitric Oxide Production in C6 Astrocyte Cell Culture by Various Dietary Compounds,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 218, No. 4, 1998, pp. 390-397.
[45] R. J. Williams, J. P. E. Spencer and C. A. Rice-Evans, “Flavonoids: Antioxidants of Signaling Molecules?” Free Radical Biology & Medicine, Vol. 36, No. 7, 2004, pp. 838-849. doi:10.1016/j.freeradbiomed.2004.01.001
[46] H. P. Kim, K. H. Son, H. Chang and S. S. Kang, “Antiinflammatory Plant Flavonoids and Cellular Action Mechanisms,” Journal of Pharmacological Sciences, Vol. 96, No. 3, 2004, pp. 229-245. https://www.jstage.jst.go.jp/article/jphs/96/3/96_3_229/_pdf
[47] H. H. Harald, W. Schmidt and U. Walter, “NO at Work,” Cell, Vol. 78, No. 6, 1994, pp. 919-925.
[48] F. Aktan, “iNOS-mediated Nitric Oxide Production and Its Regulation,” Life Sciences, Vol. 75, No. 6, 2004, pp. 639-653. doi:10.1016/j.lfs.2003.10.042
[49] V. Sobolev, S. I. Khan, N. Tabanca, D. E. Wedge, S. P. Manly, S. J. Cutler, M. R. Coy, J. J. Becnel, S. A. Neff and J. B. Gloer, “Biological Activity of Peanuts (Arachis hypogaea) Phytoalexins and Selected Natural and Synthetic Stilbenoids,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 5, 2011, pp. 1673-1682. doi:10.1021/jf104742n
[50] H. Y. Ahn, Y. Xu and S. T. Davidge, “Epigallocatechin3-O-gallate Inhibits TNFR-induced Monocyte Chemotactic Protein-1 Production from Vascular Endothelial Cells,” Life Sciences, Vol. 82, No. 17-18, 2008, pp. 964-968. doi:10.1016/j.lfs.2008.02.018
[51] J. K. Kundu and Y. J. Surh, “Epigallocatechin Gallate Inhibits Phorbol Ester-Induced Activation of NF-κB and CREB in Mouse Skin: Role of p38 MAPK,” Annals of the New York Academy of Sciences, Vol. 1095, 2007, pp. 504-512. doi:10.1196/annals.1397.054
[52] K. W. Lee, J. K. Kundu, S. O. Kim, K. S. Chun, H. J. Lee and Y. J. Surh, “Cocoa Polyphenolds Inhibit Phorbol Ester-induced Superoxide Anion Formation in Cultured HL-60 Cells and Expression of Cyclooxygenase-2 and Activation of NF-κB and MAPKs in Mouse Skin in Vivo,” Journal of Nutrition, Vo. 136, No. 5, 2006, pp. 1150-1155. http://jn.nutrition.org/content/136/5/1150.full.pdf+html
[53] M. H. Pan, C. S. Lai, S. Dushenkov and C. T. Ho, “Modulation of Inflammatory Genes by Natural Dietary Bioactive Compounds,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 11, 2007, pp. 4467-4477. doi:10.1021/jf900612n
[54] D. S. Wheeler, J. D. Catravas, K. Odoms, A. Denenberg, V. Malhotra and H. R. Wong, “Epigallocatechin-3-gallate, a Green Tea-Derived Polyphenol, Inhibits IL-1 β-Dependent Proinflammatory Signal Transduction in Cultured Respiratory Epithelial Cells,” Journal of Nutrition, Vol. 134, No. 5, 2004, pp. 1039-1044. http://jn.nutrition.org/content/134/5/1039.full.pdf+html

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.