Heat-Killed Lactobacillus brevis SBC8803 Induces Serotonin Release from Intestinal Cells

Abstract

Previously, we reported that changes induced in autonomic neurotransmission in rats by Lactobacillus brevis SBC8803 may be mediated by serotonin 3 (5-HT3) receptors. In this study, we evaluated the effects of heat-killed L. brevis SBC8803 on serotonin (5-HT) releasing from intestinal cells. In the in vitro study, L. brevis SBC8803 stimulated 5-HT release from cultured rat endocrine RIN-14B cells (SBC8803 vs. sterile water; P < 0.01). For in vivo study, 2 mg of heat-killed L. brevis SBC8803 was administered using a stomach sonde (feeding needle) to C57BL/6J mice. Analysis of plasma by ELISA showed gradually increase in 5-HT concentrations (0 min vs. 60 min; P < 0.05). ELISA of ex vivo cultured intestinal loops composed of duodenum and part of the jejunum, from C3H/HeN and C57BL/6J male mice indicated that L. brevis SBC8803 effectively induced 5-HT release (SBC8803 vs. sterile water; P < 0.01). These experimental results suggest that heat-killed L. brevis SBC8803 may stimulate 5-HT release from mouse intestinal cells such as enterochromaffin cells.

Share and Cite:

Y. Nakaita, H. Kaneda and T. Shigyo, "Heat-Killed Lactobacillus brevis SBC8803 Induces Serotonin Release from Intestinal Cells," Food and Nutrition Sciences, Vol. 4 No. 8, 2013, pp. 767-771. doi: 10.4236/fns.2013.48099.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. F. Cryan and T. G. Dinan, “Mind-Altering Microor ganisms: The Impact of the Gut Microbiota on Brain and Behaviour,” Nature Reviews Neuroscience, Vol. 13, No. 10, 2012, pp. 701-712. doi:10.1038/nrn3346
[2] P. Forsythe and W. A. Kunze, “Voices from within: Gut Microbes and the CNS,” Cellular Molecular Life Sci ences, Vol. 70, No. 1, 2013, pp. 55-69. doi:10.1007/s00018-012-1028-z
[3] D. M. Saulnier, Y. Ringel, M. B. Heyman, J. A. Foster, P. Berick, R. J. Shulman, J. Versalovic, E. Verdu, T. Dinan, G. Hecht and F. Gurner, “The Intestinal Microbiome, Probiotics and Prebiotics in Neurogastroenterology,” Gut Microbes, Vol. 4, No. 1, 2013, pp. 1-11. doi:10.4161/gmic.22973
[4] M. Tanida, T. Yamano, K. Maeda, N. Okumura, Y. Fu kushima and K. Nagai, “Effects of Intraduodenal Injec tion of Lactobacillus johnsonii La1 on Renal Sympathetic Nerve Activity and Blood Pressure in Urethane-Anesthe tized Rats,” Neuroscience Letters, Vol. 389, No. 2, 2005, pp. 109-114. doi:10.1016/j.neulet.2005.07.036
[5] M. Tanida, Y. Fukushima, T. Yamano, K. Maeda, Y. Horii, J. Shen and K. Nagai, “Effect of Probiotics Strain Lactobacillus paracasei ST11(NCC2461) on Autonomic Nerve Activities, Blood Pressure and Appetite in Rats,” Current Topics Nutraceutical Research, Vol. 5, No. 4, 2007, pp. 157-164.
[6] S. Segawa, Y. Nakakita, Y. Takata, Y. Wakita, T. Kaneko, H. Kaneda, J. Watari and H. Yasui, “Effect of Oral Ad ministration of Heat-Killed Lactobacillus brevis SBC 8803 on Total and Ovalbumin-Specific Immunoglobulin E Production through the Improvement of Th1/Th2 Bal ance,” International Journal of Food Microbiology, Vol. 121, No. 1, 2008, pp. 1-10. doi:10.1016/j.ijfoodmicro.2007.10.004
[7] S. Segawa, Y. Wakita, H. Hirata and J. Watari, “Oral Administration of Heat-Killed Lactobacillus brevis SBC 8803 Ameliorates Alcoholic Liver Disease in Ethanol Containing Diet-Fed C57BL/6N Mice,” International Journal of Food Microbiology, Vol. 128, No. 2, 2008, pp. 371-377. doi:10.1016/j.ijfoodmicro.2008.09.023
[8] N. Ueno, M. Fujiya, S. Segawa, T. Nata, K. Moriichi, H. Tanabe, Y. Mizukami, N. Kobayashi, K. Ito and Y. Ko hgo, “Heat-Killed Body of Lactobacillus brevis SBC8803 Ameliorates Intestinal Injury in a Murine Model of Coli tis by Enhancing the Intestinal Barrier Function,” In flammatory Bowel Disease, Vol. 17, No. 11, 2011, pp. 2235-2250.
[9] Y. Horii, Y. Nakakita, Y. Fujisaki, S. Yamamoto, N. Itoh, K. Miyazaki, H. Kaneda, K. Oishi, T. Shigyo and K. Na gai, “Effects of Intraduodenal Injection of Lactobacillus brevis SBC8803 on Autonomic Neurotransmission and Appetite in Rodents,” Neuroscience Letters, Vol. 539, 2013, pp. 32-37. doi:10.1016/j.neulet.2013.01.037
[10] K. Nozawa, E. Kawabata-Shoda, H. Doihara, R. Kojima, H. Okada, S. Mochizuki, Y. Sano, K. Inamura, H. Ma tsushime, T. Koizumi, T. Yokoyama and H. Ito, “TRPA1 Regulates Gastrointestinal Motility through Serotonin Release from Enterochronaffin Cells,” Proceedings of National Academy Sciences of the USA, Vol. 106, No. 9, 2009, pp. 3408-3413. doi:10.1073/pnas.0805323106
[11] S. Fukumoto, M. Tatewaki, T. Yamada, M. Fujimiya, C. Mantyh, M. Voss, S. Eubanks, M. Harris, T. N. Pappas and T. Takahashi, “Short-Chain Fatty Acids Stimulate Colonic Transit via Intraluminal 5-HT Release in Rats,” American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, Vol. 284, No. 5, 2003, pp. R1269-R1276.
[12] H. Uneyama, A. Niijima, A. S. Gabriel and K. Torii, “Luminal Amino Acid Sensing in the Rat Gastric Mu cosa,” American Journal of Physiology: Gastrointestinal Liver Physiology, Vol. 291, No. 6, 2006, pp. G1163-G1170. doi:10.1152/ajpgi.00587.2005
[13] S. H. Bogunovic, J. S. Tilstra, D. T. Chang, N. Harpaz, H. Xiong, L. F. Mayer and S. E. Plevy, “Enteroendocrine Cells Express Functional Toll-Like Receptors,” American Journal of Physiology: Gastrointestinal Liver Physiology, Vol. 292, No. 6, 2007, pp. G1770-G1783. doi:10.1152/ajpgi.00249.2006
[14] M. M. Costedio, N. Hyman and G. M. Mawe, “Serotonin and Its Role in Colonic Function and in Gastrointestinal Disorders,” Diseases of the Colon and Rectum, Vol. 50, No. 3, 2007, pp. 376-388. doi:10.1007/s10350-006-0763-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.