[1]
|
Ziedses des Plante, B.G. (1932) Eine neue methode zur differenzierung in der roentgenographie (planigraphie). Acta Radiologica, 13, 182-192.
doi:10.3109/00016923209135135
|
[2]
|
Miller, E.R., McCurry, E.M. and Hruska, B. (1971) An infinite number of laminagrams from a finite number of radiographs. Radiology, 98, 249-255.
|
[3]
|
Grant, D.G. (1972) Tomosynthesis. A three-dimensional radiographic imaging technique. IEEE Transaction on Biomedical Engineering, 19, 20-28.
doi:10.1109/TBME.1972.324154
|
[4]
|
Baily, N.A., Lasser, E.C. and Crepeau, R.L. (1973) Electrofluoro-plangigraphy. Radiology, 107, 669-671.
|
[5]
|
Kruger, R.A., Nelson, J.A., Ghosh-Roy, D., Miller, F.J., Anderson, R.E. and Liu, P.Y. (1983) Dynamic tomographic digital subtraction angiography using temporal filteration. Radiology, 147, 863-867.
|
[6]
|
Sone, S., Kasuga, T., Sakai, F., Aoki, J., Izuno, I. and Tanizaki, Y. (1991) Development of a high-resolution digital tomosynthesis system and its clinical application. Radiographics, 11, 807-822.
|
[7]
|
Sone, S., Kasuga, T., Sakai, F., Kawai, T., Oguchi, K. and Hirano, H. (1995) Image processing in the digital tomosynthesis for pulmonary imaging. European Radiology, 5, 96-101. doi:10.1007/BF00178089
|
[8]
|
Stiel, G., Stiel, L.G., Klotz, E. and Nienaber, C.A. (1993) Digital flashing tomosynthesis: A promising technique for angiographic screening. IEEE Transaction on Medical Imaging, 12, 314-321. doi:10.1109/42.232261
|
[9]
|
Duryea, J., Dobbins, J.T. and Lynch, J.A. (2003) Digital tomosynthesis of hand joints for arthritis assessment. Medical Physics, 30, 325-333. doi:10.1118/1.1543573
|
[10]
|
Niklason, L.T., Christian, B.T., Niklason, L.E., Kopans, D.B., Castleberry, D.E. and Opsahl-Ong, B.H. (1997) Digital tomosynthesis in breast imaging. Radiology, 205, 399-406.
|
[11]
|
Dobbins III, J.T. and Godfrey, D.J. (2003) Digital x-ray tomosynthesis: Current state of the art and clinical potential. Physics in Medicine and Biology, 48, R65-R106.
doi:10.1088/0031-9155/48/19/R01
|
[12]
|
Gomi, T. and Hirano, H. (2008) Clinical potential of digital linear tomosynthesis imaging of total joint arthroplasty. Journal of Digital Imaging, 21, 312-322.
doi:10.1007/s10278-007-9040-9
|
[13]
|
Joemai, R.M.S., Bruin, P.W., Veldkamp, W.J.H. and Geleijns, J. (2012) Metal artifact reduction for CT: Development, implementation, and clinical comparison of a generic and a scanner-specific technique. Medical Physics, 39, 1125-1132. doi:10.1118/1.3679863
|
[14]
|
Hsieh, J. (1995) Computed tomography technology and applications; image artifacts causes and correction. In: Goldman, L.W. and Fowlkes, J.B., Eds., Medical CT and Ultrasound, Advanced Medical Publishing, Madison, 487518.
|
[15]
|
Wang, G., Snyder, D.L., O’Sullivan, J.A. and Vannier, M.W. (1996) Iterative debluring for metal artifacts reduction. IEEE Transaction on Medical Imaging, 15, 657-664.
doi:10.1109/42.538943
|
[16]
|
Wang, G., Vannier, M.W. and Cheng, P.C. (1999) Iterative X-ray cone-beam tomography for metal artifacts reduction and local region reconstruction. Microscopy and Microanalysis, 5, 58-65.
doi:10.1017/S1431927699000057
|
[17]
|
Wang, G., Frei, T. and Vannier, M.W. (2000) A fast iterative algorithm for metal artifact reduction in x-ray CT. Academic Radiology, 7, 607-614.
doi:10.1016/S1076-6332(00)80576-0
|
[18]
|
De Man, B., Nuyts, J., Dupont, P. and Suetens, P. (2000) Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm. IEEE Transaction on Nuclear Sciences, 47, 977-981. doi:10.1109/23.856534
|
[19]
|
Zhao, S., Robertson, D.D., Wang, G., Whiting, B. and Bae, K.T. (2000) X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses. IEEE Transaction on Medical Imaging, 19, 1238-1247.
doi:10.1109/42.897816
|
[20]
|
Watzke, O. and Kalender, W.A. (2004) A pragmatic approach to metal artifact reduction in CT: Merging of metal artifact reduced images. European Radiology, 14, 849-856. doi:10.1007/s00330-004-2263-y
|
[21]
|
Kamel, E.M., Burger, C., Buck, A., von Schulthess, G.K. and Goerres, G.W. (2003) Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. European Radiology, 13, 724-728.
|
[22]
|
White, L.M. and Buckwalder, K.A. (2002) Technical considerations: CT and MR imaging in the postoperative orthopaedic patient. Seminars in Musculoskeletal Radiology, 6, 5-17. doi:10.1055/s-2002-23160
|
[23]
|
Buckwalter, K.A., Parr, J.A., Choplin, R.H. and Capello, W.N. (2006) Multichannel CT imaging of orthopaedic hardware and implants. Seminars in Musculoskeletal Radiology, 10, 86-97. doi:10.1055/s-2006-934219
|
[24]
|
Lee, M.J., Kim, S., Lee, S.A., Song, H.T., Huh, Y.M. and Kim, D.H. (2007) Overcoming artifacts from metallic orthopaedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics, 27, 791-803.
doi:10.1148/rg.273065087
|
[25]
|
Machida, H., Yuhara, T., Mori, T., Ueno, E., Moribe, Y. and Sabol, J.M. (2010) Optimizing parameters for flatpanel detector digital tomosynthesis. Radiographics, 30, 546-562. doi:10.1148/rg.302095097
|
[26]
|
Tapiovaara, M. and Siiskonen, T. (2008) A Monte Carlo program for calculating patient doses in medical x-ray examinations. 2nd Edition, STUK-A231, Helsinki.
|
[27]
|
Stamm, G. (2012) CT-expo.
http://www.sascrad.com/page10.php
|
[28]
|
Kak, A. and Slaney, M. (1988) Principles of computerized tomographic imaging. IEEE, New York.
|
[29]
|
Smith, D.B. (1985) Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods. IEEE Transaction on Medical Imaging, M1-4, 14-25. doi:10.1109/TMI.1985.4307689
|
[30]
|
Feldkamp, L.A., Davis, L.C. and Kress, J.W. (1984) Practical cone-beam algorithm. Journal of the Optical Society of America, A1, 612-619. doi:10.1364/JOSAA.1.000612
|
[31]
|
Ruttimann, U., Groenhuis, R. and Webber, R. (1984) Restoration of digital multilane tomosynthesis by a constrained iteration method. IEEE Transaction on Medical Imaging, MI-3, 141-148. doi:10.1109/TMI.1984.4307670
|
[32]
|
Bleuet, P., Guillemaud, R., Magin, I., Magnin, I. and Desbat, L. (2001) An adapted fan volume sampling scheme for 3D algebraic reconstruction in linear tomosynthesis. IEEE Transaction on Nuclear Sciences, 3, 1720-1724.
doi:10.1109/NSSMIC.2001.1008674
|
[33]
|
Gordon, R., Bender, R. and Hermen, G.T. (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of theoretical biology, 29, 471-481.
doi:10.1016/S0022-5193(70)80010-8
|
[34]
|
Gomi, T., Hirano, H. and Umeda, T. (2009) Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction. Computerized Medical Imaging and Graphics, 33, 257-274.
doi:10.1016/j.compmedimag.2009.01.004
|
[35]
|
Marin, D., Nelson, R.C., Schindera, S.T., Richard, S., Youngblood, R.S. and Yoshizumi, T.T. (2010) Low-tubevoltage, high-tube-current multidetector abdominal CT: Improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience. Radiology, 254, 145-153.
doi:10.1148/radiol.09090094
|
[36]
|
Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J. and Pavlicek, W. (2009) Iterative reconstruction technique for reducing body radiation dose at CT. American Journal of Roentgenology, 193, 764-771.
doi:10.2214/AJR.09.2397
|
[37]
|
Yanagawa, M., Honda, O., Yoshida, S., Kikuyama, A., Inoue, A. and Sumikawa, H. (2010) Adaptive statistical iterative reconstruction technique for pulmonary CT: Image quality of the cadaveric lung on standard and reduced-dose CT. Academic Radiology, 17, 1259-1266.
doi:10.1016/j.acra.2010.05.014
|
[38]
|
Wu, T., Stewart, A., Stanton, M., McCauley, T., Phillips, W. and Kopans, D.B. (2003) Tomographic mammogramphy using a limited number of low-dose cone-beam projection images. Medical Physics, 30, 365-380.
doi:10.1118/1.1543934
|
[39]
|
Roth, T.D., Maertz, N.A., Parr, J.A., Buckwalter, K.A. and Choplin, R.H. (2012) CT of the hip prosthesis: Appearance of components, fixation, and complications. Radiographics, 32, 1089-1107.
doi:10.1148/rg.324115183
|