
J. Biomedical Science and Engineering, 2013, 6, 722-731                                                     JBiSE 
http://dx.doi.org/10.4236/jbise.2013.67089 Published Online July 2013 (http://www.scirp.org/journal/jbise/) 

Comparison of metal artifact in digital tomosynthesis and 
computed tomography for evaluation of phantoms 

Tsutomu Gomi 
 

School of Allied Health Sciences, Kitasato University, Sagamihara, Japan 
Email: gomi@kitasato-u.ac.jp 
 
Received 23 May 2013; revised 23 June 2013; accepted 30 June 2013 
 
Copyright © 2013 Tsutomu Gomi. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

We compared metal artifact in X-ray digital tomo- 
synthesis (DT) and modern computed tomography 
(CT) reconstruction to improve the image quality. We 
compared the images of a prosthetic phantom (tita- 
nium) and a contrast-detail phantom obtained by DT 
using conventional filtered backprojection (FBP), 
metal artifact reduction (MAR) processing, and si- 
multaneous iterative reconstruction technique (SIRT) 
methods and those obtained by CT using conven- 
tional FBP and adaptive statistical iterative recon- 
struction methods. The effectiveness of each method 
for enhancing the visibility of a prosthetic phantom 
was quantified in terms of the intensity profile and 
root mean square error, and the removal of ghosting 
artifacts was quantified in terms of the artifact 
spread function (ASF). In addition, low contrast re- 
solution was evaluated in terms of the contrast-to- 
noise ratio. Image error was smaller in the MAR DT 
images in the near in-focus-plane, and the intensity 
profiles revealed the beam hardening effect. Streak 
artifacts were reduced in the SIRT DT and adaptive 
statistical iterative reconstruction CT images. The ASF 
performances of the algorithms were ranked in de- 
scending order: 1) MAR DT; 2) CT (adaptive statistical 
iterative reconstruction, and conventional FBP); 3) 
SIRT DT; and 4) conventional FBP DT. The low con- 
trast resolution was higher in the CT images than in the 
DT images. In conclusion, a review of the results re- 
vealed that the metal artifact reduction was highest 
for tomosynthesis with MAR processing, and the low 
contrast resolution performance was highest for CT. 
 
Keywords: Tomosynthesis; Computed Tomography; 
Prosthesis 

1. INTRODUCTION 

Digital tomosynthesis provides the benefits of digital 

imaging [1-7], and the tomographic benefits of computed 
tomography (CT) at decreased radiation doses and cost 
in an approach that is easily implemented in conjunction 
with radiography. This technique has been investigated in 
angiography and in imaging of the chest, hand joints, 
lungs, teeth, and breasts [7,8-11]. In addition, digital to- 
mosynthesis using the filtered back projection (FBP) al- 
gorithm has been reported to be favorably efficient [11] 
but its effectiveness depends considerably on the region 
of the image. This type of digital tomosynthesis gives 
results that are independent of the type of metal used in 
the patient [12]. In addition, flexibility in choosing digi- 
tal tomosynthesis imaging parameters on the basis of the 
desired final images and generation of high-quality im- 
ages might be beneficial. Ideally, structures in a given 
plane of interest should be clearly displayed in the cor- 
responding tomosynthesis reconstruction plane, whereas 
structures located outside of that plane should not be 
visible. Practically, the limited angular range of the to- 
mosynthesis image acquisition geometry dictates that the 
spatial resolution is limited in the dimension perpendicu- 
lar to the detector plane; therefore, out-of-plane struc- 
tures cannot be totally removed from the reconstruction 
plane. Out-of-plane structures are present in every recon- 
struction plane. At one projection angle, these ghosting 
features are distributed along the line formed by the X- 
ray source and the actual feature. 

Imaging by X-ray CT has improved over the past three 
decades and is now a powerful tool in medical diagnos- 
tics. It has become an essential noninvasive imaging 
technique since the advent of spiral CT imaging in the 
1990s and has led to shorter scan times and improved 
three-dimensional (3D) spatial resolution. Further, CT 
provides high resolution in the tomographic plane but 
limited resolution in the axial direction. However, the 
quality of images generated by a CT scanner could still 
be compromised by the presence of metal objects in the 
field-of-view. The imaging of patients with metal im- 
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plants such as marker pins, dental fillings, or hip pros- 
theses, might give rise to artifacts such as bright and dark 
streaks, cupping, and capping. This susceptibility to arti- 
facts could be attributed to quantum noise, scattered ra- 
diation, and beam hardening [13]. Metal artifacts influ- 
ence image quality by reducing contrast and obscuring 
details; thus, they hinder the ability to detect structures of 
interest, which can possibly lead to misdiagnosis. Photon 
starvation could be a major cause of metal artifacts. In 
addition, CT values are reduced, which can lead to errors 
when using these data (e.g., for attenuation correction in 
positron emission tomography/CT imaging) [14]. The 
metallic components of arthroplasty devices are high- 
contrast objects that generate artifacts when imaged in 
CT scans. The presence of artifacts, along with the par- 
tial-volume effect, severely restricts the potential for 
objective quantification of total joint replacement by CT. 
Methods for reducing metal artifacts aim to improve the 
quality of images affected by the artifacts. Iterative [15- 
18] and wavelet reconstruction techniques [19] as well as 
mathematic interpolations and combinations of filtering 
techniques have been studied in an attempt to further 
reduce metal artifacts and provide missing data obscured 
by them [20,21]. 

In the presence of metallic joint prostheses or osteo- 
synthetic materials, the metal implant itself and the in- 
terfaces between the implant, dose, and surrounding tis- 
sue should be evaluated. Important diagnostic criteria 
include exclusion of features or loosening and verifica- 
tion of sufficient coverage of the implant [22] as well as 
ruling out of hematoma or inflammation in the adjacent 
soft tissue. The CT scanning parameters that influence 
metal artifacts include detector element collimation, X- 
ray beam energy (kilovolt peak), tube current (mAs), and 
pitch for image acquisition and the reconstruction algo- 
rithm or filter reconstruction section thickness [23]. How- 
ever, because of the occurrence of metal artifacts, eva- 
luation of these features remains challenging, with many 
cases rendered uninterpretable even with hard convolu- 
tion kernels and widened CT density ranges [24]. In to- 
mosynthesis, metallic artifacts occur as very low signals 
along the sweep direction around the edge of a high- 
attenuation material such as a metal prosthesis or an os- 
teosynthetic material. These artifacts are predominantly 
caused by reconstruction of the very low-level signals in 
the shadow of the highly attenuating object and, to a 
much lesser degree, by the limited sweep angle. Tomo- 
synthesis has advantages over CT imaging in which ei- 
ther beam-hardening or metallic artifacts complicate de- 
tection of surrounding bone changes [12,25]. 

In this study, we compared the ability of tomosynthe- 
sis and modern CT to accurately image hip prosthesis 
and contrast-detail phantom, particularly with respect to 
metal artifact reduction performance. 

2. MATERIALS AND METHODS 

2.1. Phantom Specifications 

For artifact evaluations, a hip prosthesis phantom (PerFix 
HA CMT91006; Japan Medical Materials Co., Tokyo, 
Japan, Figure 1) was used in a polymethyl methacrylate 
(PMMA) case filled with water (case φ, 200 × 300 mm). 
The hip prosthesis phantom was positioned in the center 
of the case. In this study, an implant was not embedded 
in a bone structure within a hip prosthesis phantom be- 
cause the phantom was used only to evaluate metal arti- 
fact reduction and not hip replacement loosening. 

For evaluation of low contrast resolution, the contrast- 
detail phantom was used with PMMA slabs. Contrast- 
detail phantom of different diameters (artificial region, 
CaCO3) and thicknesses were arranged within the PMMA 
slabs (Figure 2). For X-ray imaging, we are arranged 
with a PMMA slabs (200 × 200 mm) of 100 mm thick- 
ness placed on the top and bottom of the contrast-detail 
phantom. 
 

 

Figure 1. Illustration of the hip-prosthesis phantom used in 
this study. 
 

 

Figure 2. Illustration of the contrast-detail phantom used in 
this study. 
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The prosthetic and contrast-detail phantoms were de- 
signed to evaluate image reconstruction quality for in- 
plane (x-y plane) and out-plane (z axis) images. 

2.2. Tomosynthesis System 

The tomosynthesis system (Sonial Vision Safire II; Shi- 
madzu Co., Kyoto, Japan) consisted of an X-ray tube 
with a 0.4-mm focal spot and a 362.88  362.88-mm 
digital flat-panel detector composed of amorphous sele- 
nium. Each detector element was 150  150 μm in size. 
Tomography was performed linearly with a total acquisi- 
tion time of 6.4 s [80 kVp, 250 mA, 20 ms/view; effec- 
tive dose in accordance with the International Commis- 
sion on Radiological Protection (ICRP); the anatomy 
used for dose calculation: X-ray pelvis, 0.69 mSv (ICRP 
103)] and an acquisition angle of 40˚. Monte Carlo based 
software (PCXMC version 2.0; Radiation and Nuclear 
Safety Authority, Helsinki, Finland) was used to calcu- 
late the effective dose [26]. A matrix size of 1440 × 1440 
with 12 bits per image was used to sample projection 
images during a single tomographic pass (74 projections) 
and was used to reconstruct tomograms of a desired 
height. A 4-mm slice thickness at 1-mm reconstruction 
intervals was used to obtain the reconstructed images 
(0.272 mm/pixel). An antiscatter grid was used (focused 
type, grid ratio 12:1). The distance from the source to the 
isocenter was 980 mm and that from the isocenter to the 
detector was 1100 mm (3.0-mm aluminum equivalent fil- 
tration).  

2.3. CT System 

CT scans were performed using a multi-slice CT scanner 
(64-slice Discovery CT 750HD scanner; General Electric 
(GE) Healthcare Corp., Milwaukee, WI, USA) with set- 
tings of 120 kVp, 150 mA, 0.625 mm × 64 collimation, 
“STND” reconstruction kernel, and a 1-s gantry-rotation 
time at a beam pitch of 0.984 [effective dose, 4.1 mSv 
(ICRP 103)]. Monte Carlo based software (CT dosimetry 
calculator, CT-Expo version 2.1; Georg Stamm, Rosdorf, 
Germany) was used to calculate the effective dose [27]. 
The clinical task was to assess hip prostheses. A 4-mm- 
thick slice (reformatted images) is generally used in 
clinical practice; therefore, in this study, reformatted re- 
constructed images of 4-mm-thick slices (axial images 
reconstructed from 1-mm-thick slices) were obtained at 
1-mm reconstruction intervals (512 × 512 pixels and a 
140-mm field-of-view). 

2.4. Tomosynthesis Reconstruction 

In FBP algorithms, which are widely used in tomography, 
many projections are acquired to reconstruct cross-sec- 
tional images. In two-dimensional (2D) tomographic im- 
aging, projecting an object corresponds to sampling it 

perpendicular to the X-ray beam in the Fourier space 
[28]. The relationship between the radon transform and 
cone-beam projections has been thoroughly studied, and 
solutions to the cone-beam reconstruction have been 
provided [29]. Filtering this 2D image by multiplying its 
Fourier transform by a Ramp or Shepp-Logan filter ker- 
nel restores the proper impulse shape to the reconstructed 
image. Performing this filtering in 2D Fourier space is an 
acceptable method of restoring the image, but it is possi- 
ble that an equivalent filtering response might be ob- 
tained much faster by filtering the one-dimensional pro- 
jection data before back projecting them. The FBP al- 
gorithm generally provides highly precise 3D-recon- 
struction images [30]. In this study, the conventional Shepp- 
Logan filter kernel was used to reconstruct the tomosyn- 
thesis FBP images. 

An iterative algorithm performs reconstruction recur- 
sively [31,32], unlike the one-step operation in backpro- 
jection and FBP algorithms. The reconstruction is ac- 
complished by iteratively updating the unknown linear 
attenuation coefficients by minimizing the error between 
the measured and calculated projection data. The original 
method in this family of algebraic reconstruction tech- 
niques (ART) [33] has been determined. Because only a 
single projection value is used to update the linear at- 
tenuation coefficients at a time, ART has a fast conver- 
gence speed but will converge to a least squares solution, 
which can be very noisy for severely ill-posed inverse 
problems such as limited-angle tomosynthesis recon- 
struction. To improve the ART method, variations have 
been proposed regarding its implementation. Depending 
on the amount of projection data and the method used to 
update the current estimation, ART has been modified to 
other methods such as the simultaneous iterative recon- 
struction technique (SIRT) [33]. SIRT is applied itera- 
tively so that the projections of the reconstructed volume, 
computed from an image formation model, resemble the 
experimental projections. In this study, the SIRT itera- 
tions used were 5, 10, 20, 40, 60, and 100. 

The metal artifact reduction (MAR) processing me- 
thod is based on a modified Shepp-Logan reconstruc- 
tion filter kernel by considering the additional weight of 
the direct current components (“W” factor) in the fre- 
quency domain [34]. The MAR method is a filtering 
method that can be used in combination with the back- 
projection algorithm to yield sliced images with the de- 
sired properties via tomosynthesis. A modified Shepp- 
Logan reconstruction filter kernel reduces artifacts and 
improves the quality of images affected by metal artifacts. 
When MAR processing uses a large value for the W fac- 
tor, a near shift-and-add processing image is generated, 
and reduction of metal artifacts occurs. The effectiveness 
of the method in enhancing the visibility of a prosthetic 
case was quantified in terms of removal of ghosting arti- 
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facts. In this study, a direct-current component was used 
at three levels: low (W = 0.04), medium (W = 0.06), and 
high (W = 0.08). 

2.5. CT Reconstruction 

Iterative reconstruction algorithms, with and without in- 
corporation of a priori information, have been used to 
reconstruct incomplete projections [13-15,19]. Although 
previous results obtained by iterative reconstruction have 
been unsatisfactory, a recently developed iterative de- 
blurring method has produced image reconstruction from 
incomplete data with few artifacts. Iterative reconstruc- 
tion, which has recently become available on commercial 
CT scanners, enables metal artifact noise reduction with- 
out a trade-off in spatial resolution [35]. However, itera- 
tive reconstruction has unfavorable effects: its use alters 
the texture of the image noise, which can yield an unusu- 
ally homogeneous image. This may not be immediately 
appealing to most radiologists, who are usually accus- 
tomed to FBP images [36]. Moreover, an excessive de- 
gree of iterative reconstruction might obscure fine and 
subtle details [37]. 

In computation with iterative reconstruction, the image 
has an initial set of values that are iteratively optimized 
according to the rules of the model. The FBP image is 
used for the initial condition in adaptive statistical itera- 
tive reconstruction for the following reasons: it is pre- 
sumably identical to the final optimized solution (reduc- 
ing the need for iterations), it is a valid indicator of the 
specific slice image noise, and it can be obtained rapidly. 
For modeling and in using iterative reconstruction, mi- 
nimal convergence is achievable with adaptive statis- 
tical iterative reconstruction. However, a fully converged, 
100% adaptive statistical iterative reconstruction image 
has a noise-free appearance with unusually homogeneous 
attenuation. Because some noise is inherent in CT, the 
use of 100% adaptive statistical iterative reconstruction 
might not be immediately appealing to most radiologists. 
However, blended images containing a linear mixture of 
the original FBP and this reconstruction can exhibit 
markedly decreased noise while retaining a more typical 
CT appearance. This blended image can be adjusted from 
1% to 100% in adaptive statistical iterative reconstruc- 
tion. We selected blending ratios of 20%, 40%, and 60% 
on the basis of the results of a previous study [36], and 
we added an evaluation of pure iterative reconstruction 
(100%). As in conventional FBP reconstruction, standard 
reconstruction kernels were used. 

2.6. Evaluation 

To evaluate the effects of artifacts on reconstructed im- 
age features in the in-focus-plane, we calculated an in- 
tensity profile and the root mean square error (RMSE). 

To evaluate the effects of artifacts on reconstructed im- 
age features in the adjacent out-of-plane (z direction) 
area, we calculated an artifact spread function (ASF). 
The evaluations used a hip prosthesis phantom. Different 
reconstruction methods in the in-focus-plane were used 
to compare the intensity profiles. Wu et al. have pro- 
posed an ASF metric to quantify the artifacts observed in 
planes outside the focus image plane [38]. These artifacts 
are generated from real features located in the focus im- 
age plane and resemble real features. The capability of 
tomosynthesis in differentiating features that are super- 
imposed along the z direction can be reflected from the 
ASF measurement. The artifacts exhibited in the image 
plane are defined by ASF as: 
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where z0 and z are the locations of the real features in the 
in-focus and out-of-planes, respectively. Nartifact(z0) and 
NBG(z0) are the region of interest (ROI) for average pixel 
intensities of the feature and the image background in the 
in-focus-plane, respectively. Nartifact(z) and NBG(z) are the 
ROI for average pixel intensities of the artifact and im- 
age background in the out-of-plane, respectively. The 
ROI size for evaluation was chosen as a 20 × 20-pixel 
region for all features. Areas of measurement for the 
ASF metric are displayed in Figure 3. Another important 
metric to be considered is RMSE, which can be com- 
puted by obtaining the root of the summation of the 
square of the standard deviation and the square of the 
bias. The reference image is a straight projected radio- 
graphic image. Different reconstruction methods in the 
in-focus-plane (an image that is the same as the intensity 
profile evaluation image) were used to compare RMSEs. 
For CT (mid-plane reformatted image) comparison with 
the projected radiographic image, we coordinated the 
magnification (scaling processing) of the projected ra- 
diographic image. The errors in the image plane are de- 
fined in terms of RMSE as follows: 
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Where X is the observed image, 
i
 is the reference im- 

age, and n is the number of compounds in the analyzed 
set. 

x

To quantitatively evaluate the reconstructed image qua- 
lity (low contrast resolution), we calculated the image 
contrast derived from the contrast-to-noise ratio (CNR) 
of selected features to determine the low contrast detect- 
ability (region: φ, 15 mm; 100 mg/ml CaCo3) at its in- 
focus-plane for detection of detail bony changes. The 
evaluation used a contrast-detail phantom. CNR was 

efined as follows: d   
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Figure 3. Comparison between artifact-spread function (ASF) versus distance from the in-focus-plane for 
tomosynthesis and CT. Slices with positive distance are above the feature prosthesis. The ASF were obtained 
by averaging three repeated measurements. The prosthetic was in the field of view, 9 mm from in-focus-plane. 
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where N1 is the mean pixel value in the object, N0 is the 
mean pixel value in the background area, and 

0  is the 
standard deviation of the pixel values in the background. 
The parameter 

0  not only includes photon statistics 
and electronic noise in the results but also structural 
noise that can obscure the object. Areas of measurement 
for the CNR metric are presented in Figure 4. 

For tomosynthesis acquisition, the phantom was ar- 
ranged in parallel to the x – y detector plane. For CT ac- 
quisition, the phantom was arranged perpendicular to the 
x – y detector plane; coronal reformatted images were 
used as evaluation images. 

Figure 4. Comparison between contrast-to-noise ratio (CNR) 
versus distance from the in-focus-plane for tomosynthesis and 
CT. Slices with positive distance are above the feature signal. 
The CNR were obtained by averaging three repeated meas- 
urements. The contrast-detail phantom was in the field of view, 
7 mm from in-focus-plane. 

3. RESULTS 

The reconstruction images of the prosthetic phantom 
obtained using the conventional FBP, MAR processing, 
SIRT, and adaptive statistical iterative methods are pre- 
sented in Figure 5. With regard to the tomosynthesis 
images, the results revealed that the MAR processing and 
SIRT methods produced reconstructed images of features 
that did not contain metal artifacts in the vertical direc- 
tion (X-ray sweep direction). In particular, reduction of 
artifacts was evident in the caput femoris and peripheral 

 

regions of the prosthetic phantom. Furthermore, with re- 
gard to the CT images, the results could not confirm that 
conventional FBP and adaptive statistical iterative recon- 
struction methods could produce reconstructed images of 
features that were free of metal artifacts in the horizontal 
direction (X-ray sweep direction). 

The intensity profile of the femoral neck for the con- 
ventional FBP, MAR processing, SIRT, and adaptive statis- 
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Figure 5. Comparison between tomosynthesis, CT images and 
those obtained from the imaging algorithms of metal-artifact- 
reduction (MAR) processing, conventional filtered back pro-
jection (FBP), simultaneous iterative reconstruction technique 
(SIRT), and adaptive statistical iterative reconstruction in the 
in-focus-plane. (a) projection; (b) FBP; (c) MAR low; (d) 
MAR middle; (e) MAR high; (f) SIRT iteration 5; (g) SIRT 
iteration 10; (h) SIRT iteration 20; (i) SIRT iteration 40; (j) 
SIRT iteration 60; (k) SIRT iteration 100; (l) CT FBP; (m) CT 
iterative 20%; (n) CT iterative 40%; (o) CT iterative 60%; (p) 
CT iterative 100%. The FBP, MAR, SIRT tomosynthesis im- 
ages for the corresponding prosthesis phantom are displayed 
with the same window width and window level, whereas the 
CT image of the same prosthesis phantom is displayed with 
narrower window width and different window level to archive 
visually comparable contrast and background gray level. The 
X-ray source moved in the vertical direction relative to the 
image shown. 
 
tical iterative reconstruction methods have been pre- 
sented in Figure 6. We set up the comparison to evaluate 
the regions of the femoral neck in which artifacts were 
observed to occur in both techniques. Tomosynthesis and 
CT profiles were set at 30 pixels (profile length, 25 mm). 
In the tomosynthesis images, MAR processing and SIRT 
methods reduced metal artifacts. Improvement of image 
quality by reduction of artifacts (related to signal under- 
shoot) by MAR processing and SIRT methods has been 
accepted. In the CT images, the conventional FBP and 
adaptive statistical iterative reconstruction methods pro- 
duced very similar results for the selected features; the 
reason could be that the adaptive statistical iterative re- 
construction method was developed for noise reduction 
and not metal artificial image reduction in high-attenua- 
tion objects. Taken together, these results indicated that 
MAR processing, SIRT, conventional FBP (CT), and adap- 
tive statistical iterative reconstruction methods were ef- 
fective in reducing the portion of metal artifacts result- 
ing due to signal undershoot. 

The reference (projected radiographic) reconstruction 
error images of the prosthetic phantom obtained using 
the conventional FBP (tomosynthesis), MAR processing, 

SIRT, conventional FBP (CT), and adaptive statistical 
iterative reconstruction methods are presented in Figure 
7. The tomosynthesis error images and RMSE values 
(Table 1) revealed that the MAR processing method re- 
duced metal artifacts in the vertical direction (X-ray 
sweep direction). Reduction of artifacts was particularly 
apparent in the caput femoris and peripheral regions of 
the prosthetic phantom. The tomosynthesis error images 
and RMSE values revealed that the SIRT method did not 
reduce the incidence of metal artifacts in the vertical di- 
rection (X-ray sweep direction). In addition, these results 
indicate that the improvement in reduction of artifacts 
was not related to increase in the number of iterations in 
the SIRT method. The CT error images and RMSE val- 
ues indicated that the conventional FBP and adaptive 
statistical iterative reconstruction methods produced very 
similar results for the selected features. The RMSE val- 
ues were larger for the CT images than for the tomosyn- 
thesis images, which might have been because of the 
large influence of the femoral neck on the generated me- 
tal artifacts (X-ray sweep direction). In addition, we be-
lieve that the DT RMSE results were lower because of 
apparent freedom from metal artifacts because of inher- 
ent blur in the tomosynthesis reconstruction from few 
projections. 

The chart in Figure 3 presents the ROI position and 
ASF results for the prosthetic phantom. The chart dem- 
onstrates that tomosynthesis with MAR processing (W = 
high) removed the highest number of metal artifacts. In 
tomosynthesis imaging, the artifact reduction images 
demonstrated better image quality for MAR processing 
than for conventional FBP using the iterative algorithm. 
On the other hand, in CT imaging, the artifact reduction 
images had better image quality for the pure iterative 
reconstruction algorithm (100% adaptive statistical itera- 
tive reconstruction) than for conventional FBP using 
20%, 40%, and 60% adaptive statistical iterative recon- 
struction.  

A comparison of the metal artifact evaluations on the 
basis of the image quality, intensity profiles, RMSEs, and 
ASFs of the tomosynthesis reconstructed images with 
MAR processing and the iterative algorithm and the CT 
reconstructed images with 100% adaptive statistical it- 
erative reconstruction revealed decreased metal and beam- 
hardening artifacts. Evaluation of the metal artifact eva- 
luations through the entire thickness of the specimen 
revealed that the metal artifact reduction performance of 
the algorithm could be ranked in the descending order: 1) 
tomosynthesis (MAR processing, W = high); 2) CT 
(100% adaptive statistical iterative reconstruction); 3) CT 
(20%, 40%, and 60% adaptive statistical iterative recon- 
struction and conventional FBP); 4) tomosynthesis (it- 
erative algorithm and 100 iterations); and 5) tomosyn- 
thesis (conventional FBP). 
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Figure 6. Comparison between intensity profiles using tomosynthesis and CT in the in-focus- 
plane. The pixel value was normalized by removing the mean of each intensity profile. The inten-
sity profile were obtained by averaging three repeated measurements. 

 

Table 1. Comparison of the root mean square errors (RMSEs) 
for tomosynthesis and CT. RMSEs were calculated from the 
in-focus-plane tomosynthesis and CT images. (DT: digital to- 
mosynthesis). 

 

Analysis object RMSE 

projection—DT FBP 0.1803 

projection—DT MAR low 0.1434 

projection—DT MAR middle 0.1097 

projection—DT MAR high 0.0756 

projection—DT SIRT iteration 5 0.1830 

projection—DT SIRT iteration 10 0.1631 

projection—DT SIRT iteration 20 0.1834 

projection—DT SIRT iteration 40 0.2091 

projection—DT SIRT iteration 60 0.2170 

projection—DT SIRT iteration 100 0.2268 

projection—CT FBP 0.3515 

projection—CT iterative 20% 0.3515 

projection—CT iterative 40% 0.3515 

projection—CT iterative 60% 0.3516 

projection—CT iterative 100% 0.0543 

Figure 7. Comparison between tomosynthesis, CT error im-
ages and the root-mean-square-error (RMSE) of the images 
obtained from the imaging algorithms of MAR processing (W 
= low, medium, and high), conventional FBP, SIRT, and adap-
tive statistical iteration reconstruction in the in-focus-plane. (a) 
projection—FBP; (b) projection—MAR low; (c) projection— 
MAR middle; (d) projection—MAR high; (e) projection— 
SIRT iteration 5; (f) projection—SIRT iteration 10; (g) projec-
tion—SIRT iteration 20; (h) projection—SIRT iteration 40; (i) 
projection—SIRT iteration 60; (j) projection—SIRT iteration 
100; (k) projection—CT FBP; (l) projection—CT iterative 
20%; (m) projection—CT iterative 40%; (n) projection—CT 
iterative 60%; (o) projection—CT iterative 100%. The FBP, 
MAR, SIRT tomosynthesis error images for the corresponding 
prosthesis phantom are displayed with the same window width 
and window level, whereas the CT error image of the same 
prosthesis phantom is displayed with narrower window width 
and different window level to archive visually comparable con- 
trast and background gray level. The X-ray source moved in 
the vertical direction relative to the image shown. 

 
CNRs for tomosynthesis and CT were investigated, as 

displayed in Figure 4. Low contrast resolution was 
higher in the CT images than in the DT images. Low 
contrast characteristics of the CT produced an increase in 
the in-focus-plane CNR values but a reduction in the out- 
of-plane CNR values. The partial volume effect in the 
out-of-plane images attenuated the signal components in 
the z direction of the object. Furthermore, in the tomo- 
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synthesis images, the low contrast resolution was high 
with MAR processing (W-value set to middle and high) 
relative to conventional FBP and SIRT methods. Tomo- 
synthesis images of the contrast-detail phantom produced 
an increase in the out-of-plane CNR values but a reduc- 
tion in the in-focus-plane CNR values. In this case, we 
speculate that the out-of-plane images were smoothed by 
the discrete blur structure shadows. However, MAR 
processing tomosynthesis demonstrated its greatest ad- 
vantages during the tomosynthesis reconstruction meth- 
ods. 

A review of the results revealed that metal artifact re- 
duction was highest for tomosynthesis with MAR proc- 
essing, and low contrast resolution performance was 
highest for CT. 

4. DISCUSSION 

Digital tomosynthesis with MAR processing was effec- 
tive for reducing metal artifacts from metal objects, par-
ticularly for artifacts at 9-mm distances, but the effec-
tiveness strongly depended on the image region. 3D visu- 
alization of the prosthetic phantom on images with MAR 
processing was superior to images processed by conven- 
tional FBP, iterative algorithms, and adaptive statistical 
iterative reconstruction.  

In general, the observed artifacts are caused by the 
loss of the largest normal contribution from artifact-free 
voxels in the image. Such a voxel originally has normal 
contributions, and its value is slightly reduced after the 
largest normal contribution is omitted. A voxel with one 
abnormal contribution rejects this contribution while 
using all the others, including the largest normal contri- 
bution. Therefore, these voxels tend to have higher val- 
ues than their neighboring artifact-free voxels such that 
artifactual needles appear when the voxels are more no- 
ticeable in the background formed from the artifact-free 
voxels. This is a drawback of the FBP method, but arti- 
facts because of this effect are very evident compared 
with those in images without artifact reduction. 

In comparison digital tomosynthesis and CT reported 
previously, digital tomosynthesis gives good results in- 
dependent of the type of the metal present in the patient 
and effectively removes noise artifacts, especially at 
greater distances from the metal objects [12]. In this 
study, the results revealed that metal artifact reduction 
was highest for tomosynthesis with MAR processing, 
low contrast resolution performance was highest for CT. 
Flexibility in selecting the imaging parameters in digital 
tomosynthesis with MAR processing on the basis of the 
desired final images and realistic imaging conditions 
may be beneficial. 

CT using in-focus-plane images is best for CNR opti- 
mization, whereas CT using out-of-plane images is best 
for CNR optimization. Furthermore, with CT, details 

inside the hip prosthesis phantom are clearly visible, but 
they do not appear in the tomosynthesis images. It ap- 
pears that the number of projections, effective dose, and 
pixel size of the detector provide much better results for 
CT than for tomosynthesis. The information contained in 
a tomosynthesis voxel can be obtained from 74 projec- 
tions. Ideally, the number of X-ray quanta for recon- 
struction of this voxel equals that from a single projec- 
tion acquired with the same amount of total exposure. 
Considering the detector noise from the acquisition of 
each projection, CNR is reduced in tomosynthesis imag- 
ing, which distributes the effective dose over 74 projec- 
tions. The effects of projection angle, which decreases 
the photon transmission and reduces the effective detec- 
tor pixel size, further reduce CNR as well. 

At a given projection angle, a high-attenuation feature 
can create artifacts in any voxel along the lines between 
the X-ray source and feature pixels in the projection. 
Artifact reduction becomes more difficult as the size of 
the high-attenuation feature increases or the distance 
between the voxel and high-attenuation feature decreases. 
The adaptive statistical iterative reconstruction technique 
does not assume that noise is evenly distributed across 
the entire image. Instead, matrix algebra is used to selec- 
tively identify and then subtract noise from the image 
using a mathematical model [36]. The result is a less 
noisy image, which is an unexpected effect for artificial 
image reduction. 

Periprosthetic bone is clearly depicted with modern 
CT images that have been optimized to reduce metal 
artifacts [39]. The isotropic datasets of multislice CT 
scanners allow the reformatting of high-resolution im- 
ages in any desired plane so that 3D anatomical rela- 
tionships can be clearly depicted. However, CT images 
depend on numerous factors such as the size, shape, den- 
sity, atomic number, and position of the metal objects 
along with the size and shape of the object’s cross sec- 
tion. Particularly for small implants manufactured from 
relatively light metals (e.g., titanium), the impact of 
beam hardening and scatter effects is low; hence, dis- 
torted CT values can be neglected, and noise-induced 
streaking artifacts primarily affect the image quality. In 
these cases, the pure iterative reconstruction algorithm 
appears to be a promising approach to reduce the arti- 
facts stemming from metals with relatively high atomic 
numbers. The metal from implant hardware produces 
streaks and other artifacts on CT scans, thereby adversely 
affecting image quality. These artifacts are affected by 
factors related to both hardware and scanning parameters 
[detector element collimation, X-ray beam energy (kilo- 
volt peak), tube current (mAs), and pitch for image ac- 
quisition as well as to the reconstruction algorithm or 
filter reconstruction section thickness [23,39]. 
In conclusion, the application of digital tomosynthesis 
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with MAR processing method could considerably im- 
prove the quality of images distorted by metal artifacts. 
Digital tomosynthesis with MAR processing provides 
higher quality (reducing of beam hardening effect, and 
streak artifacts) of metal artifact reduction images com- 
pared with those obtained by CT (only the adaptive sta- 
tistical iterative and conventional FBP reconstruction 
technique for modern GE scanners). On the other hand, 
low contrast resolution was higher in CT images than in 
tomosynthesis images. 
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