Fermentation of the Straw Material Paja Brava by the Yeast Pichia stipitis in a Simultaneous Saccharification and Fermentation Process


Paja Brava is a native South American grass with a high carbohydrate content. In the current work, the potential of using this feedstock for ethanol production using a simultaneous saccharification and fermentation (SSF) process with the xylose-fermenting yeast Pichia stipitis (Scheffersomyces stipitis) CBS6054 was investigated. The straw material was subjected to SO2 catalyzed steam pretreatment at 200°C and 5 min residence time, which resulted in a solubilization of pentose sugars (mainly xylose) of 64% with only minor amounts of degradation products. The obtained material, including the pretreatment liquid, was subsequently hydrolyzed and fermented in an SSF process at microaerobic conditions using either a batch or a fed-batch process at a total water-insoluble solids loading of 10%. Overall yields of ethanol based on all available sugars of 0.24 g/g and 0.27 g/g were obtained for batch and fed-batch mode of operation, respectively. The higher yield in the fed-batch process coincided with a higher degree of conversion of the sugars in the liquid medium, in particular of arabinose, for which the conversion was doubled (from 48% to 97%).

Share and Cite:

Carrasco, C. , Baudel, H. , Roslander, C. , Galbe, M. and Lidén, G. (2013) Fermentation of the Straw Material Paja Brava by the Yeast Pichia stipitis in a Simultaneous Saccharification and Fermentation Process. Journal of Sustainable Bioenergy Systems, 3, 99-106. doi: 10.4236/jsbs.2013.32014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Alzérreca, “Producción de los Pastizales de la Zonaandina de Bolivia,” Red de PastizalesAndinos (REPAAN) y el InstitutoBoliviano de TecnologíaAgropecuaria (IBTA), La Paz, Bolivia, 1992.
[2] K. Olofsson, A. Rudolf and G. Lidén, “Designing Simultaneous Saccharification and Fermentation for Improved Xylose Conversion by a Recombinant Strain of Saccharomyces cerevisiae,” Journal of Biotechnology, Vol. 134, No. 1, 2008, pp. 112-120. doi:10.1016/j.jbiotec.2008.01.004
[3] C. Carrasco, H. M. Baudel, J. Sendelius, T. Modig, C. Roslander, M. Galbe, B. Hahn-Hagerdal, G. Zacchi and G. Lidén, “SO2-Catalyzed Steam Pretreatment and Fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse,” Enzyme and Microbial Technology, Vol. 46, No. 2, 2010, pp. 64-73. doi:10.1016/j.enzmictec.2009.10.016
[4] B. E. Dale and S. Kim, “Biorefineries—Industrial Processes and Product,” Wiley-VCH, Weinheim, 2006, pp. 41-66.
[5] K. Olofsson, M. Bertilsson and G. Lidén, “A Short Review on SSF—An Interesting Process Option for Ethanol Production from Lignocellulosic Feedstocks,” Biotechnology for Biofuels, Vol. 1, No. 7, 2008, pp. 1-14. doi:10.1186/1754-6834-1-7
[6] J. H. Van Vleet and T. W. Jeffries, “Yeast Metabolic Engineering for Hemicellulosic Ethanol Production,” Current Opinions in Biotechnology, Vol. 20, No. 3, 2009, pp. 300-306. doi:10.1016/j.copbio.2009.06.001
[7] C. Carrasco, H. M. Baudel, M. Penarrieta, C. Solano, L. Tejeda, C. Roslander, M. Galbe and G. Lidén, “Steam Pretreatment and Fermentation of the Straw Material ‘Paja Brava’ Using Simultaneous Saccharification and Co-Fermentation,” Journal of Bioscience and Bioengineering, Vol. 111, No. 2, 2011, pp. 167-174. doi:10.1016/j.jbiosc.2010.10.009
[8] A. Asghari, R. J. Bothast, J. B. Doran and L. O. Ingram, “Ethanol Production from Hemicellulose Hydrolysates of Agricultural Residues Using Genetically engineered Escherichia coli Strain KO11,” Journal of Industrial Microbiology, Vol. 16, No. 1, 1996, pp. 42-47. doi:10.1007/BF01569920
[9] M. Zhang, C. Eddy, K. Deanda, M. Finkelstein and S. Picataggio, “Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis,” Science, Vol. 267, No. 5195, 1995, pp. 240-243. doi:10.1126/science.267.5195.240
[10] B. A. Prior, S. G. Kilian and J. C. du Preez, “Fermentation of D-Xylose by the Yeasts Candida shehatae and Pichia stipitis,” Process Biochemistry, Vol. 24, No. 1, 1990, pp. 21-32.
[11] K. Skoog and B. Hahn-Hagerdal, “Effect of Oxygenation on Xylose Fermentation by Pichia stipitis,” Applied and Environmental Microbiology, Vol. 56, No. 11, 1990, pp. 3389-3394.
[12] F. K. Agbogbo and G. Coward-Kelly, “Cellulosic Ethanol Production Using the Naturally Occurring Xylose-Fermenting Yeast, Pichia stipitis,” Biotechnology Letters, Vol. 30, No. 9, 2008, pp. 1515-1524. doi:10.1007/s10529-008-9728-z
[13] J. N. Nigam, “Development of Xylose-Fermenting Yeast Pichia stipitis for Ethanol Production through Adaptation on Hardwood Hemicellulose acid Prehydrolysate,” Journal of Applied Microbiology, Vol. 90, No. 2, 2001, pp. 208-215. doi:10.1046/j.1365-2672.2001.01234.x
[14] A. Almeida, T. Modig, A. Petersson, B. Hahn-Hagerdal, G. Lidén and M. F. Gorwa-Grauslund, “Increased Tolerance and Conversion of Inhibitors in Lignocellulosic Hydrolysates by Saccharomyces cerevisiae,” Journal of Chemical Technology and Biotechnology, Vol. 82, No. 4, 2007, pp. 340-349. doi:10.1002/jctb.1676
[15] J. Zhang, D. Chu, J. Huang, Z. Yu, G. Dai and J. Bao, “Simultaneous Saccharification and Ethanol Fermentation at High Corn Stover Solids Loading in a Helical Stirring Bioreactor,” Biotechnology and Bioengineering, Vol. 105, No. 4, 2009, pp. 718-728.
[16] E. Palmqvist, B. Hahn-Hagerdal, M. Galbe, M. Larsson, K. Stenberg, Z. Szengyel, Ch. Tengborg and G. Zacchi, “Design and Operation of a Bench-Scale Process Development Unit for the Production of Ethanol from Lignocellulosics,” Bioresource Technology, Vol. 58, No. 3, 1996, pp. 171-179. doi:10.1016/S0960-8524(96)00096-X
[17] M. J. Taherzadeh, G. Lidén, L. Gustafsson and C. Niklasson, “The Effects of Pantothenate Deficiency and Acetate Addition on Anaerobic Batch Fermentation of Glucose by Saccharomyces cerevisiae,” Applied Biochemistry and Biotechnology, Vol. 46, No. 2, 1996, pp. 176-182.
[18] A. Rudolf, H. Baudel, G. Zacchi, B. Hahn-Hagerdal and G. Lidén, “Simultaneous Saccharification and Fermentation of Steam-Pretreated Bagasse Using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054,” Biotechnology and Bioengineering, Vol. 99, No. 4, 2008, pp. 783-790. doi:10.1002/bit.21636
[19] M. J. Taherzadeh, R. Eklund, L. Gustafsson, C. Niklasson and G. Lidén, “Characterization and Fermentation of Dilute-Acid Hydrolyzates from Wood,” Industrial and Engineering Chemical Research, Vol. 36, No. 11, 1999, pp. 4659-4665. doi:10.1021/ie9700831
[20] F. Posey, J. Okafor and C. Roberson, “Determination of Insoluble Solids of Pretreated Biomass Material,” National Renewable Energy Laboratory NREL, Biomass Program, Laboratory Analytical Procedure LAP-018, Golden, Co., 1998.
[21] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter and D. Templeton, “Determination of Sugars, By-Products, and Degradation Products in Liquid Fraction Process Samples,” National Renewable Energy Laboratory NREL, Biomass Program, Golden, Co., 1995.
[22] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Croker, “Determination of Structural Carbohydrates and Lignin in Biomass,” National Renewable Energy Laboratory NREL, Biomass Program, Golden, Co., 2008.
[23] M. Wayman and S. R. Parekh, “SO2 Prehydrolysis for High Yield Ethanol Production from Biomass,” Applied Biochemistry and Biotechnology, Vol. 17, No. 1-3, 1988, pp. 33-43. doi:10.1007/BF02779144
[24] N. Q. Meinander, I. Boels and B. Hahn-Hagerdal, “Fermentation of Xylose/Glucose Mixtures by Metabolically Engineered Saccharomyces cerevisiae Strains Expressing XYL1 and XYL2 from Pichia stipitis with and without Overexpression of TAL1,” Bioresource Technology, Vol. 68, No. 1, 1999, pp. 79-87. doi:10.1016/S0960-8524(98)00085-6
[25] M. Taniguchi, T. Tohma, T. Itaya and M. Fujii, “Ethanol Production from a Mixture of Glucose and Xylose by Co-Culture of Pichia stipitis and a Respiratory-Deficient Mutant of Saccharomyces cerevisiae,” Journal of Fermentation and Bioengineering, Vol. 83, No. 4, 1997, pp. 364-370. doi:10.1016/S0922-338X(97)80143-2
[26] S. G. Kilian and N. van Uden, “Transport of Xylose and Glucose in the Xylose-Fermenting Yeast Pichia stipitis,” Applied Microbiology and Biotechnology, Vol. 27, No. 5-6, 1988, pp. 545-548.
[27] A. L. Does and L. F. Bisson, “Characterization of Xylose Uptake in the Yeasts Pichia heedii and Pichia stipitis,” Applied and Environmental Microbiology, Vol. 55, No. 1, 1989, pp. 159-164.
[28] C. J. Panchal, L. Bast, I. Rusell and G. G. Stewart, “Repression of Xylose Utilization by Glucose in Xylose-Fermenting Yeasts,” Canadian Journal of Microbiology, Vol. 34, 1998, pp. 1316-1320. doi:10.1139/m88-230
[29] F. K. Agbogbo, G. Coward-Kelly, M. Torry-Smith and K. S. Wenger, “Fermentation of Glucose/Xylose Mixtures Using Pichia stipitis,” Process Biochemistry, Vol. 41, No. 11, 2006, pp. 2333-2336. doi:10.1016/j.procbio.2006.05.004
[30] K. Olofsson, M. Wiman and G. Lidén, “Controlled Feeding of Cellulases Improves Conversion of Xylose in Simultaneous Saccharification and Co-Fermentation for Bioethanol Production,” Journal of Biotechnology, Vol. 145, No. 2, 2010, pp. 168-175. doi:10.1016/j.jbiotec.2009.11.001
[31] J. R. M. Almeida, T. Modig, A. Reder, G. Lidén and M. F. Gorwa-Grauslund, “Pichia stipitis Xylose Reductase Helps Detoxifying Lignocellulosic Hydrolysate by Reducing 5Hydroxymethyl-Furfural (HMF),” Biotechnology for Biofuels, Vol. 1, 2008, p. 12. doi:10.1186/1754-6834-1-12
[32] X. Y. Jing, X. Zhang and J. Bao, “Inhibition Performance of Lignocellulose Degradation Products on Industrial Cellulase Enzymes during Cellulose Hydrolysis,” Applied Biochemistry and Biotechnology, Vol. 159, No. 3, 2009, pp. 696-707. doi:10.1007/s12010-009-8525-z
[33] P. A. Bicho, P. L. Runnals, J. D. Cunningham and H. Lee, “Induction of Xylose Reductase and Xylitol Dehydrogenase Activities in Pachysolentannophilus and Pichia stipitis on Mixed Sugars,” Applied and Environmental Microbiology, Vol. 54, No. 1, 1988, pp. 50-54.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.