Validation of Numerical Modeling for the Prediction of Elastic and Failure Behavior of Diamond Powder Filled Woven Composites

HTML  XML Download Download as PDF (Size: 3863KB)  PP. 63-84  
DOI: 10.4236/ojcm.2017.72004    1,879 Downloads   4,018 Views  Citations

ABSTRACT

A numerical investigation was carried out to examine the role of micro-sized diamond powder filler on the on-axis tensile stiffness properties of the standard modulus T300 and the high modulus YS90A woven fabric composite plates by progressive damage modeling. Finite element modeling (FEM) results for the T300 composite with and without diamond powder predicted a specific case of fiber failure in all the plies showing the characteristics of brittle failure. Static tensile tests were carried out on the YS90A composite coupons containing no diamond powder (DP) and filled with 6% and 12% volume fractions of DP. A higher content of diamond powder in the coupons led to agglomeration. This induced stress concentrations and subsequently reduced the mechanical properties. FEM was carried out considering specimens with and without an induced stress concentration geometry in the YS90A coupons filled with DP. The results of the on-axis tensile tests indicated a delamination type of failure in both cases with additional fiber fracture in the Open Hole Tensile (OHT) coupons.

Share and Cite:

Srinivasan, M. , Maettig, P. , Glitza, K. , Sanny, B. , Schumacher, A. and Duhovic, M. (2017) Validation of Numerical Modeling for the Prediction of Elastic and Failure Behavior of Diamond Powder Filled Woven Composites. Open Journal of Composite Materials, 7, 63-84. doi: 10.4236/ojcm.2017.72004.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.