Share This Article:

New Applications of the Noise Spectroscopy for Hydrogen Sensors

Full-Text HTML XML Download Download as PDF (Size:2998KB) PP. 1662-1669
DOI: 10.4236/jmp.2014.516166    2,425 Downloads   2,719 Views   Citations


Peculiarities of the low-frequency noise spectroscopy of hydrogen gas sensors made on MgFeO4 n-type porous semiconductor covered by the palladium catalytic nanosize particles are investigated. Behavior of the low-frequency noise spectral density and its exponent value from sensitive layer thickness in the frequency range 2 - 300 Hz are analyzed. Sensitivity of the sensor calculated by the noise method is several tenth times higher as compared with the resistive method. It is shown that besides of the well-known applications, noise spectroscopy can be also used for definition of the unknown thickness of gas sensitive layer, for definition of the sensitive layer subsurface role in the formation of the low-frequency noises and for definition of the intensity of trapping-detrapping processes of the gas molecules.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Gasparyan, F. , Khondkaryan, H. and Aleksanyan, M. (2014) New Applications of the Noise Spectroscopy for Hydrogen Sensors. Journal of Modern Physics, 5, 1662-1669. doi: 10.4236/jmp.2014.516166.


[1] Kish, L.B., Vajtai, R. and Granqwist, C.G. (2000) Sensors and Actuators B, 71, 55-59.
[2] Gomri, S., Seguin, J.-L. and Aguir, K. (2005) Sensors and Actuators B, 107, 722-729.
[3] Gasparyan, F.V. (2013) Chapter 11: Noise Reduction in (Bio-) Chemical Sensors Functionalized with Carbon Nanotube Multilayers. In: Vaseashta, A. and Khudaverdyan, S., Eds., Advanced Sensors for Safety and Security, NATO Science for Peace and Security Series B: Physics and Biophysics, Springer ScienceCBusiness Media, Dordrecht, 139-150.
[4] Vitusevich, S. and Gasparyan, F. (2011) Chapter 11: Low-Frequency Noise Spectroscopy at Nanoscale: Carbon Nanotube Materials and Devices. In: Marulanda, J.M., Ed., Carbon Nanotubes Applications on Electron Devices, PH InTech, Rijeka, 257-296.
[5] Aroutiounian, V.M., Mkhitaryan, Z.H., Shatveryan, A.A., Gasparyan, F.V., Zh. Ghulinyan, M., Pavesi, L., Kish, L.B. and Granqvist, C.-G. (2008) IEEE Sensors Journal, 8, 786-790.
[6] Aroutiounian, V.M., Mkhitaryan, Z.H., Shatveryan, A.A., Gasparyan, F.V., Zh. Ghulinyan, M., Pavesi, L., Kish, L.B. and Granqvist, C.-G. (2008) Noise Spectroscopy of Porous Silicon Gas Sensors. Proceedings of SPIE (Sensors, and Command Control Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VII, Orlando, 17-20 March 2008, 69430G (1-8).
[7] Makoviychuk, M.I. (2008) Russian Microelectronics, 37, 226-237.
[8] Tsai, M. And Ma, T. (1994) IEEE Transactions on Electron Devices, 41, 2061-2068.
[9] Vandamme, L.K.J., Li, X. and Rigaud, D. (1994) IEEE Transactions on Electron Devices, 41, 1936-1945.
[10] Mkhitaryan, Z.H., Gasparyan, F.V. and Surmalyan, A.V. (2009) Low Frequency Noises of Hydrogen Sensors on the Base of Silicon Having Nano-Pores Layer. 20th International Conference on Noise and Fluctuations, Pisa, 14-19 June 2009, 137-140.
[11] Gomry, S., Seguin, J.L., Guerin, J. and Aguir, K. (2006) Sensors and Actuators B: Chemical, 114, 451-459.
[12] Wolkenstein, T. (1991) Electronic Properties on Semiconductor Surface during Chemisorption. Consultants Bureau, New York.
[13] Gasparyan, F.V., Poghossian, A., Vitusevich, S.A., Petrychuk, M.V., Sydoruk, V.A., Siqueira, J.R., Oliveira, O.N., Offenhausser, A. and Schoning, M.J. (2011) IEEE Sensors Journal, 11, 142-149.
[14] Gasparyan, F.V., Vitusevich, S.A., Offenhausser, A. and Schoning, M.J. (2011) Modern Physics Letters B, 25, 831-840.
[15] Heszler, P., Ionescu, R., Llober, E., Reyes, L.F., Smulko, J.M., Kish, L.B. and Granqvist, C.G. (2007) Physica Status Solidi (B), 244, 4331-4335.
[16] Mkhitaryan, Z., Gasparyan, F. and Surmalyan, A. (2009) Sensors & Transducers Journal, 104, 58-67.
[17] Gasparyan, F.V., Melkonyan, S.V. and Asriyan, H.V. (2006) International Scientific Journal for Alternative Energy and Ecology, 21-22.
[18] Hovhannisyan, R.V., Khondkaryan, H.D., Aleksanyan, M.S., Arakelyan, V.M., Semerjyan, B.O., Gasparyan, F.V. and Aroutiounian, V.M. (2014) Proceedings of the National Academy of Sciences of Armenia: Physics, 49, 241-251. (In Russian)
[19] Korotchenkov, G. and Cho, B.K. (2013) Sensors and Actuators B: Chemical, 188, 709-728.
[20] Vandamme, L.K.J. and Hooge, F.N. (2008) IEEE Transactions on Electron Devices, 55, 3070-3085.
[21] Hooge, F.N. and Vandamme, L.K.J. (1978) Physics Letters A, 66, 315-316.
[22] Melkonyan, S.V., Gasparyan, F.V. and Asriyan, H.V. (2007) Main Sources of Electron Mobility Fluctuations in Semiconductors. SPIE 4th International. Symposium on Fluctuation and Noise, Florence, 20-24 May 2007, 66001K.
[23] Crupi, F., Srinivasan, P., Magnone, P., Simoen, E., Pace, C., Misra, D. and Claeys, C. (2006) IEEE Electron Device Letters, 27, 688-691.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.