TITLE:
Low Energy Nuclear Synthesis in Earthquake, Volcanic Eruptions, and Genesis of Heavy Elements
AUTHORS:
Alexander Vol, Arie Lev Gilat
KEYWORDS:
Low Energy Nuclear Synthesis Reactions” (LENR), Volcanos, Earthquakes, Ore-Deposits
JOURNAL NAME:
International Journal of Geosciences,
Vol.16 No.1,
January
27,
2025
ABSTRACT: 1989 is the beginning of intensive research into the phenomena of cold nuclear fusion, renamed “The Low Energy Nuclear Synthesis Reactions” (LENR). Based on these results and the long-term research of earthquakes and volcanic activity, the authors of this article put forward a hypothesis about the mainly chemical nature of the energy released at earthquakes and volcanic eruptions with the participation of primordial hydrogen and helium: high mobility of hydrogen and oxidizers provide focusing and accumulation of the latent chemical energy, which is realized suddenly and instantaneously as explosions and initiate the earthquake and/or eruptions. The volcanic eruption is viewed therein as a special type of earthquake whereby the hypocenter rises to the earth’s surface. The authors proposed a new hypothesis that LENRs significant energy to earthquakes and eruptions at the synthesis of elements lighter than iron, thus creating excess energy, which is partially used for the synthesis of heavier elements. The combination of the chemical and nuclear reactions transforms these centers of geophysical activity into giant reactors where the nuclear, chemical, and thermal transformation of mantle materials and the creation of primary deposits of heavy elements such as uranium, thorium, gold, etc. So, all chemical elements heavier than iron are not detected in the solar wind. These elements discovered on our planet could be (and probably were) created on planet Earth and not imported from explosive supernovae or far-off remote stars. To the best of our knowledge, this hypothesis has not been proposed until now.