TITLE:
Impact of CR Forbush Decreases on Upper Atmospheric Pressure and Temperature in Saudi Arabia
AUTHORS:
Maghrabi Abdullrahman, Alghamdi Rasha, Aldosari Abdulah, Almutairy Mohammed
KEYWORDS:
Forbush Decrease, Upper Air Temperature, Saudi Arabia, Climate Change, Solar Activity
JOURNAL NAME:
Atmospheric and Climate Sciences,
Vol.15 No.1,
January
17,
2025
ABSTRACT: The objective of this research is to investigate the effects of cosmic ray Forbush Decreases (FDs) exceeding 7% in magnitude, occurring between 1985 and 2016, on upper atmospheric pressure and temperature at Abha and Tabouk. Employing the super epoch analysis method, the study concentrated on altitudes of 5 km and 10 km, uncovering significant variations. Seasonal and synoptic-scale variations were considered and excluded when necessary across eight 9-day periods. Both locations showed considerable fluctuations in pressure and temperature before and after the events. At 5 km altitude (21 events), Abha experienced more pressure increases both before (9 vs. 7) and after (12 vs. 11) the events compared to Tabouk. For temperature, Abha recorded more increases before the events (5 vs. 1), while Tabouk showed more decreases (19 vs. 15). Post-event, Tabouk had more temperature increases (13 vs. 10). At 10 km altitude (20 events), both regions experienced more decreases than increases in pressure and temperature before the events and more increases afterward. Notably, Abha experienced more pressure increases both 4 days before (9 vs. 7) and after the events (12 vs. 11) than Tabouk. For temperature, Abha recorded more increases before the events (5 vs. 1), while Tabouk showed more decreases (19 vs. 15). Post-event, Tabouk had more temperature increases (13 vs. 10). These findings underscore both similarities and differences in atmospheric responses to FDs between Abha and Tabouk. Both locations exhibited cooling trends before and warming trends after the events, with Tabouk demonstrating a more pronounced warming trend post-event. These results enhance our understanding of the atmospheric dynamics linked to FDs and assist in predicting weather patterns associated with these phenomena.