SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Meharg, A.A. and Hartley-Whitaker, J. (2002) Arsenic Uptake and Metabolism in Arsenic Resistant and Nonresistant Plant Species. New Phytologist, 154, 29-43.

has been cited by the following article:

  • TITLE: Lupinus microcarpus Growing in Arsenic—Agricultural Soils from Chile: Toxic Effects and It Potential Use as Phytoremediator Plant

    AUTHORS: Oscar P. Díaz, Yasna Tapia, Rubén Pastene, Marcia Cazanga, Rodrigo Segura, Santiago Peredo

    KEYWORDS: Lupinus microcarpus, Arid As-Soil, As-Toxicity, Phytostabilization

    JOURNAL NAME: Journal of Environmental Protection, Vol.7 No.1, January 27, 2016

    ABSTRACT: Arsenic (As) is the most important contaminant of the environment in northern Chile. The purpose of the present work is to study As-toxicity symptoms on Lupino microcarpus (lupine), an annual legume plant that constitutes part of the desert community of the pre-Andean area of the Antofagasta Region, Chile. This plant species is cultivated in As-agricultural soil collected from Chiu Chiu (northern Chile) which is classified as arid soils. Control soil (0 - 20 cm depth) is collected from an area located in the central zone of Chile, which is classified as molli soil. The main physic-chemical characteristics of As-soil and the control soil are determined. Eighteen plastic pots of 1.6 L (fifteen for experimental and three for control) are filled with As-soil and control soil treatments. Two plants are cultivated in each pot and then separated leaves and roots for As-analysis. Visual As-toxicity symptoms such as foliar chlorosis, necrosis of the leaf tips and margins, leaf wilting and stunted are determined. Total As concentrations in soils where lupine is cultivated, reach levels between 5.3 - 14.2 mg·kg-1 d.w. (control soil As-level: 3.1 mg·kg-1). Roots show higher As-concentration than leaves, both experimental plants as control plants (2.28 - 9.1 mg·kg-1 d.w., and 0.76 mg·kg-1 d.w., respectively) and low values of transport index (TI) (0.16 - 0.34). All of visual As-toxicity symptoms determined is showed by lupin cultivated in As-agricultural soils. Neither control lupin plant suffers any toxicity symptoms. The results indicate that lupine plants do not resist contamination and accumulated higher levels of As in roots. Lupine can be used in the phytostabilisation of As immobilizing it by microbial activity in agricultural soil.