SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Ban, F.Y., Majid, S.R., Huang, N.M. and Lim, H.N. (2012) Graphene Oxide and Its Electrochemical Performance. International Journal of Electrochemical Science, 7, 4345-4351.

has been cited by the following article:

  • TITLE: Characterization of High Yield Graphene Oxide Synthesized by Simplified Hummers Method

    AUTHORS: Kayode Oladele Olumurewa, Bolutife Olofinjana, Oladepo Fasakin, Marcus Adebola Eleruja, Ezekiel Oladele Bolarinwa Ajayi

    KEYWORDS: Graphite, Graphene, Graphene Oxide, Raman Spectroscopy, Band Gap

    JOURNAL NAME: Graphene, Vol.6 No.4, October 31, 2017

    ABSTRACT: Graphene oxide (GO) was chemically synthesized from natural flake graphite (NFG) using the simplified Hummers method. The synthesis was carried out using two routes. The first route involved stirring the one pot mixture continuously for three days at ambient temperature while the second route involved stirring another one pot mixture for six days also at ambient temperature. The two GOs were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-Ray Spectroscopy (EDX), Field Emission Scanning Electron Microscopy (FE-SEM), Raman Spectroscopy and UV-Visible Spectrometry. The FTIR spectra showed introduction of oxygen functionalities in both GO with a higher degree of oxidation in the 6-day synthesized GO while the EDX confirmed the presence of carbon and oxygen in the GOs. The SEM micrograph gave the typical wrinkle and crumpling present in the 3-day synthesized GO while the 6-day synthesized GO showed distortion in structures. The Raman spectra showed a slightly higher ID/IG ratio for the 3-day synthesized GO with the 6-day synthesized GO showing a greater disruption of the sp2 domains. The extended period of stirring and oxidation increased the band gap of the 6-day synthesized GO to 3.0 eV unlike the 3-day synthesized GO where 2.5 eV was observed.