Share This Article:

Synergistic Effect of Fullerene-Capped Gold Nanoparticles on Graphene Electrochemical Supercapacitors

DOI: 10.4236/anp.2013.21001    7,687 Downloads   18,842 Views   Citations

ABSTRACT

We report the synthesis of graphene/fullerene-capped gold nanoparticle nanocomposite film which was used to construct supercapacitor electrodes. The fullerene-based self-assembled monolayers on gold nanoparticles (AuNPs) were attained via the fullerene(C60)-gold interaction. The fullerene-capped AuNPs effectively separated the graphene sheets preventing aggregation. A synergistic effect was observed—the specific capacitance of graphene/fullerene-capped AuNP electrode is197 F/g, which is higher than that of graphene electrode (31 F/g), graphene/AuNP electrode (126 F/g), and graphene/fullerene electrode (118 F/g). The results render a novel route of synthesis and modification of graphene-based materials for the construction of electrochemical energy storage devices.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yong, V. and Hahn, H. (2013) Synergistic Effect of Fullerene-Capped Gold Nanoparticles on Graphene Electrochemical Supercapacitors. Advances in Nanoparticles, 2, 1-5. doi: 10.4236/anp.2013.21001.

References

[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, Vol. 318, No. 6042, 1985, pp. 162-163. doi:10.1038/318162a0
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[3] V. Yong and J. M. Tour, “Theoretical Efficiency of Nanostructured Graphene-Based Photovoltaics,” Small, Vol. 6, No. 2, 2010, pp. 313-318. doi:10.1002/smll.200901364
[4] D. Yu and L. Dai, “Self-Assembled Graphene/Carbon Nanotube Hybrid Filmsfor Supercapacitors,” Journal of Physical Chemistry Letters, Vol. 1, No. 2, 2010, pp. 467 470. doi:10.1021/jz9003137
[5] L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-Based Materials as Supercapacitor Electrodes,” Journal of Materials Chemistry, Vol. 20, No. 29, 2010, pp. 5983-5992. doi:10.1039/c000417k
[6] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Letters, Vol. 8, No. 10, 2008, pp. 3498-3502. doi:10.1021/nl802558y
[7] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1103-1169. doi:10.1021/cr0300789
[8] B. Bhushan, “Springer Handbook of Nanotechnology,” 3rd Edition, Springer, Berlin, 2010. doi:10.1007/978-3-642-02525-9
[9] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos and P. L. McEuen, “Nanomechanical Oscillations in a Single-C60Transistor,” Nature, Vol. 407, No. 6800, 2000, pp. 57-60. doi:10.1038/35024031
[10] G. J. Bubnis, S. M. Cleary and H. R. Mayne, “Self-Assembly and Structural Behavior of a Model Rigid C60 Terminated Thiolate on Au(111),” Chemical Physics Letters, Vol. 470, No. 4-6, 2009, pp. 289-294. doi:10.1016/j.cplett.2009.01.071
[11] L. Buglione, A. Bonanni, A. Ambrosi and M. Pumera, “Gold Nanospacers Greatly Enhance the Capacitance of Electrochemically Reduced Graphene,” ChemPlusChem, Vol. 77, No. 1, 2012, pp. 71-73. doi:10.1002/cplu.201100016
[12] R. Klajn, M. A. Olson, P. J. Wesson, L. Fang, A. Coskun, A. Trabolsi, S. Soh, J. F. Stoddart and B. A. Grzybowski, “Dynamic Hook-and-Eye Nanoparticle Sponges,” Nature Chemistry, Vol. 1, No. 9, 2009, pp. 733-738. doi:10.1038/nchem.432
[13] V. Yong and H. T. Hahn, “Graphene Growth with Giant Domains Using Chemical Vapor Deposition,” CrystEngComm, Vol. 13, No. 23, 2011, pp. 6933-6936. doi:10.1039/c1ce05714f
[14] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-Ray Photoelectron Spectroscopy,” Physical Electronics Division, Perkin-Elmer Corp., Norwalk, 1995.
[15] J. C. Zhou, X. H. Wang, M. Xue, Z. Xu, T. Hamasaki, Y. Yang, K. Wang and B. Dunn, “Characterization of Gold Nanoparticle Binding to Microtubule Filaments,” Materials Science & Engineering C, Vol. 30, No. 1, 2010, pp. 20-26. doi:10.1016/j.msec.2009.08.003
[16] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, “Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System,” Journal of the Chemical Society, Chemical Communications, No. 7, 1994, pp. 801-802. doi:10.1039/c39940000801
[17] M. C. Bourg, A. Badia and R. B. Lennox, “Gold-Sulfur Bonding in 2D and 3D Self-Assembled Monolayers: XPS Characterization,” Journal of Physical Chemistry B, Vol. 104, No. 28, 2000, pp. 6562-6567. doi:10.1021/jp9935337
[18] M. Brust, C. J. Kiely, D. Bethell and D. J. Schiffrin, “C60 Mediated Aggregation of Gold Nanoparticles,” Journal of the American Chemical Society, Vol. 120, No. 47, 1998, pp. 12367-12368. doi:10.1021/ja982776u
[19] J. T. Lyon and L. Andrews, “Infrared Spectrum of the Au-C60 Complex,” ChemPhysChem, Vol. 6, No. 2, 2005, pp. 229-232. doi:10.1002/cphc.200400467
[20] V. J. Keast, A. J. Scott, R. Brydson, D. B. Williams and J. Bruley, “Electron Energy-Loss Near-Edge Structure—A Tool for the Investigation of Electronic Structure on the Nanometre Scale,” Journal of Microscopy, Vol. 203, No. 2, 2001, pp. 135-175. doi:10.1046/j.1365-2818.2001.00898.x
[21] V. P. Dravid, S. Z. Liu and M. M. Kappes, “Transmission Electron Microscopy of Chromatographically Purified Solid State C60 and C70,” Chemical Physics Letters, Vol. 185, No. 1-2, 1991, pp. 75-81. doi:10.1016/0009-2614(91)80143-L

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.