SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Ishiyama, K., Inoune, E., Watanabe-Takahasi, A., Obaras, M., Yamaya, T. and Takahashi, H. (2004) Kinetic Properties and Ammonium-Dependent Regulation of Cytosolic Isoenzymes of Glutamine Syntetase in Arabidopsis. Journal of Biological Chemistry, 279, 16598-16605.
https://doi.org/10.1074/jbc.M313710200

has been cited by the following article:

  • TITLE: Cadmium Effects on Enzymes of Ammonia Assimilation in Excised Etiolated Maize Leaf Segments during Greening: A Mechanistic Approach

    AUTHORS: Juliana Sarangthem, Sonal Dhamgaye, Rekha Gadre

    KEYWORDS: Glutamine Synthetase, Cd Effects, Ammonia Assimilation, Zea mays, Maize Leaves

    JOURNAL NAME: American Journal of Plant Sciences, Vol.8 No.6, May 26, 2017

    ABSTRACT: Supply of CdCl2 in the presence of NH4NO3 to excised etiolated maize leaf segments during greening decreased the glutamine synthetase and nicotinamide adenine dinucleotide reduced (NADH) dependent glutamate synthase activities, while the ferredoxin (Fd) dependent glutamate synthase and glutamate dehydrogenase activities were increased. Inclusion of inorganic nitrogen, metabolites and the inhibitor influenced the effect of Cd on glutamine synthetase activity. The % inhibition of activity caused by Cd was higher with NO3- but lower with NH4+. Glutamine, 2-oxoglutarate, glutathione and sucrose decreased the % inhibition by Cd with the more prominent effect with glutamine and sucrose. Methionine sulfoximine exerted a more prominent effect for + Cd enzyme at lower concentration. The results indicate the involvement of reciprocal effects of Cd on glutamine synthetase and glutamate dehydrogenase activities and also on NADH- and Fd-glutamate synthase activities. For the inhibitory effect of Cd on glutamine synthetase activity, NH4+, glutamine, 2-oxoglutarate, glutathione and sucrose exerted a protective effect with the sucrose being most effective.