Share This Article:

Determination of the Compound Biological Effectiveness (CBE) Factors Based on the ISHIYAMA-IMAHORI Deterministic Parsing Model with the Dynamic PET Technique

Abstract Full-Text HTML XML Download Download as PDF (Size:972KB) PP. 759-766
DOI: 10.4236/jct.2015.68083    2,271 Downloads   2,749 Views   Citations

ABSTRACT

Purpose: In defining the biological effects of the 10B(n, α)7Li neutron capture reaction, we have proposed a deterministic parsing model (ISHIYAMA-IMAHORI model) to determine the Compound Biological Effectiveness (CBE) factor in Borono-Phenyl-Alanine (BPA)-mediated Boron Neutron Capture Therapy (BNCT). In present paper, we demonstrate a specific method of how the application of the case of application to actual patient data, which is founded on this model for tissues and tumor. Method: To determine the CBE factor, we derived the following new calculation formula founded on the deterministic parsing model with three constants, CBE0, F, n and the eigen value Nth/Nmax

(1), where, Nth and Nmax are the threshold value of boron concentration of N and saturation boron density and CBE0, F and n are given as 0.5, 8 and 3, respectively. In order to determine Nth and Nmax in the formula, sigmoid logistic function was employed for 10B concentration data, Db(t) obtained by dynamic PET technique. (2), where, A, a and t0 are constants. Results and Conclusion: From the application of sigmoid function to dynamic PET data, it is concluded that the Nth and Nmax for tissue and tumor are identified with the parameter constants in the sigmoid function in Equation (2) as: (3). And the calculated CBE factor values obtained from Equation (1), with Nth/Nmax.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ishiyama, S. , Imahori, Y. , Itami, J. and Koivunoro, H. (2015) Determination of the Compound Biological Effectiveness (CBE) Factors Based on the ISHIYAMA-IMAHORI Deterministic Parsing Model with the Dynamic PET Technique. Journal of Cancer Therapy, 6, 759-766. doi: 10.4236/jct.2015.68083.

References

[1] Bayanov, B., Belov, V., Kindyuk, V., Oparin, E. and Taskaev, S. (2004) Lithium Neutron Producting Target for BINP Accelerator-Based Neutron Source. Applied Radiation and Isotopes, 61, 817-821.
http://dx.doi.org/10.1016/j.apradiso.2004.05.032
[2] Willis, C., Lenz, J. and Swenson, D. (2008) High-Power Lithium Target for Accelerator-Based BNCT. Proceedings of LINAC08, Victoria, MOP063, 223-225.
[3] Halfon, S., Paul, M., Arenshtam, A., Berkovits, D., Bisyakoev, M., Eliyahu, I., Feinberg, G., Hazenshprung, N., Kijel, D., Nagler, A. and Silverman, I. (2011) High Power Accelerator-Based Boron Neutron Capture with a Liquid Lithium Target and New Applications to Treatment of Infections Diseases. Applied Radiation and Isotopes, 69, 1654-1656.
http://dx.doi.org/10.1016/j.apradiso.2011.03.016
[4] Ishiyama, S., Baba, Y., Fujii, R., Nakamura, M. and Imahori, Y. (2012) In-Situ Vacuum Deposition Technique of Lithium on Neutron Production Target for BNCT. Nuclear Instruments and Methods in Physics Research, B288, 18-22.
http://dx.doi.org/10.1016/j.nimb.2012.07.024
[5] Ishiyama, S., Baba, Y., Fujii, R., Nakamura, M. and Imahori, Y. (2012) Synthesis of Lithium Nitride for Neutron Producton Target of BNCT by In-Situ Lithium Deposition and Ion Implantation. Nuclear Instruments and Methods in Physics Research, B293, 42-47.
http://dx.doi.org/10.1016/j.nimb.2012.09.016
[6] Coderre, J.A., Morris, G.M., Micca, P.L., Fishe, C.D. and Ross, G.A. (1995) Comparative Assessment of Single-Dose and Fractional Boron Neutron Capture Therapy. Radiation Research, 166, 310-317.
http://dx.doi.org/10.2307/3578951
[7] Bath, R.F., Soloway, A.H., Goodman, J.H., Gahbauer, R.A., Gupta, N., Blue, T.E., Yang, W. and Tjarks, W. (2004) Boron Neutron Capture Therapy of Brain Tumors: An Merging Therapeutic Modality 2. Neyrosurgery, 44, 433-451.
[8] Coderre, J.A. and Morris, G.M. (1999) The Irradiation Biology of Boron Neutron Capture Therapy. Radiation Research, 151, 1-18.
http://dx.doi.org/10.2307/3579742
[9] Morrsi, G.M., Coderre, J.A., Hopewell, J.W., Micca, P.L. and Rezvani, M. (1994) Response of the Skin to Boron Neutron Capture Therapy with p-Boronopenylalanine or Borocaptate Sodium. Radiotherapy & Oncology, 39, 253-259.
[10] Fukuda, H., Kobayashi, T., Hiratsuka, J., et al. (1989) Estimation of Absorbed Dose in the Covering Skin of Human Melaoma Treated by Boron Capture Therapy. Pigment Cell Research, 2, 365-369.
http://dx.doi.org/10.1111/j.1600-0749.1989.tb00222.x
[11] Kiger, J.L., Kiger, W.S., Riley, K.J., Binns, P.J., Patel, H., Hopewell, J.W., Harling, O.K., Busse, P.M. and Coderre, J.A. (2008) Functional and Histological Changes in Rat Lung after Boron Neutron Capture Therapy. Radiation Research, 171, 60-69.
http://dx.doi.org/10.1667/RR1266.1
[12] Suzuki, M., Masunaga, S., Kinachi, Y., Takagai, M., Sakurai, Y., Kobayashi, T. and Ono, K. (2000) The Effects of Boron Neutron Capture Therapy on Liver Tumors and Normal Hepatocytes in Mice. Japanese Journal of Cancer Research, 91, 1058-1064.
http://dx.doi.org/10.1111/j.1349-7006.2000.tb00885.x
[13] Morris, G.M., Smith, H.P., et al. (2000) Boron Microlocalization in Oral Mucosal Tissue. British Journal of Cancer, 82, 1764-1771.
http://dx.doi.org/10.1054/bjoc.2000.1148
[14] Ishiyama, S. and Imahori, Y. (2014) Deterministic Parsing Model of the Compound Biological Effectiveness (CBE) Factor for Intracellular 10Boron Distribution in Boron Neutron Capture Therapy. International Congress on Neutron Capture Therapy (ICNCT2014), Finland, 14-19 June 2014, 162-163.
[15] Ishiyama, S. (2014) Deterministic Parsing Model of the Compound Biological Effectiveness (CBE) Factor for Intracellular 10Boron Distribution in Boron Neutron Capture Therapy. Journal of Cancer Therapy, 5, 1388-1398.
http://dx.doi.org/10.4236/jct.2014.514140
[16] Imahori, Y., Ueda, S., Ohmori, Y., et al. (1998) Fluorine-18-Labeled Fluoroboronophenylalanine PET in Patients with Glioma. Journal of Nuclear Medicine, 39, 325-333.
[17] Imahori, Y., et al. (1998) Positron Emission Tomography-Based Boron Neutron Capture Therapy Using Boronophenylalanine for High-Grade Gliomas: Part II. Clinical Cancer Research, 4, 1833-1841.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.