[1]
|
Anonymous. http://eol.org
|
[2]
|
Ward, S.M., Webster, T.M. and Steckel, L.E. (2013) Palmer amaranth (Amaranthus palmeri): A Review. Weed Technology, 27, 12-27.
https://doi.org/10.1614/WT-D-12-00113.1
|
[3]
|
Gossett, B.J., Murdock, E.C. and Toler, J.E. (1992) Resistance of Palmer amaranth (Amaranthus palmeri) to the Dinitroaniline Herbicides. Weed Technology, 6, 587-591.
https://doi.org/10.1017/S0890037X00035843
|
[4]
|
Horak, M.J. and Peterson, D.E. (1995) Biotypes of Palmer amaranth (Amaranthus palmeri) and Common Waterhemp (Amaranthus rudis) Are Resistant to Imazethapyr and Thifensulfuron. Weed Technology, 9, 192-195.
https://doi.org/10.1017/S0890037X00023174
|
[5]
|
Horak, M.J. and Loughin, T.M. (2000) Growth Analysis of Four Amaranthus Species. Weed Science, 48, 347-355.
https://doi.org/10.1614/0043-1745(2000)048[0347:GAOFAS]2.0.CO;2
|
[6]
|
Sprague, C.L., Stoller, E.W., Wax, L.M. and Horak, M.J. (1997) Palmer amaranth (Amaranthus palmeri) and Common Waterhemp (Amaranthus rudis) Resistance to Selected ALS-Inhibiting Herbicides. Weed Science, 45,192-197.
https://doi.org/10.1017/S0043174500092705
|
[7]
|
Vencill, W.K., Grey, T.L., Culpepper, A.S., Gaines, T.A. and Westra, P. (2008) Herbicide-Resistance in the Amaranthaceae. Journal of Plant Disease Protection, Special Issue, 21, 41-44.
|
[8]
|
Wise, A.M., Grey, T.L., Prostko, E.P., Vencill, W.K. and Webster, T.M. (2009) Establishing the Geographical Distribution and Level of Acetolactate Synthase Resistance of Palmer amaranth (Amaranthus palmeri) Accessions in Georgia. Weed Technology, 23, 214-220. https://doi.org/10.1614/WT-08-098.1
|
[9]
|
Heap, I. (2019) The International Survey of Herbicide Resistant Weeds.
http://www.weedscience.org
|
[10]
|
Amrhein, N., Deus, B., Gehrke, P. and Steinrucken, H.C. (1980) The Site of the Inhibition of the Shikimate Pathway by Glyphosate. II. Interference of Glyphosate with Chorismate Formation in Vivo and in Vitro. Plant Physiology, 66, 830-834.
https://doi.org/10.1104/pp.66.5.830
|
[11]
|
Herrmann, K.M. and Weaver, L.M. (1999) The Shikimate Pathway. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 473-503.
https://doi.org/10.1146/annurev.arplant.50.1.473
|
[12]
|
Gaines, T.A., Zhang, W., Wang, D., Bukun, B., Chisholm, S.T., Shaner, D.L., Nissen, S.J., Patzoldt, W.L., Tranel, P.J., Culpepper, A.S., Grey, T.L., Webster, T.M., Vencill, W.K., Sammons, R.D., Jiang, J., Preston, C., Leach, J.E. and Westra, P. (2010) Gene Amplification Confers Glyphosate Resistance in Amaranthus palmeri. Proceedings of the National Academy of Science, 107, 1029-1034.
https://doi.org/10.1073/pnas.0906649107
|
[13]
|
Wetzel, D.K., Horak, M.J., Skinner, D.Z. and Kulakow, P.A. (1999) Transferal of Herbicide Resistance Traits from Amaranthus palmeri to Amaranthus rudis. Weed Science, 47, 538-543. https://doi.org/10.1017/S0043174500092237
|
[14]
|
Hoagland, R.E., Jordan, R.H. and Teaster, N.D. (2013) Bioassay and Characterization of Several Palmer amaranth Biotypes with Varying Tolerances to Glyphosate. American Journal of Plant Sciences, 4, 1029-1037.
https://doi.org/10.4236/ajps.2013.45127
|
[15]
|
Strack, D., Vogt, T. and Schliemann, W. (2003) Recent Advances in Betalain Research. Phytochemistry, 62, 247-269.
https://doi.org/10.1016/S0031-9422(02)00564-2
|
[16]
|
Pavokovic, D. and Krsnik-Rasol, M. (2011) Complex Biochemistry and Biotechnological Production of Betalains. Food Technology and Biotechnology, 49, 145-155.
|
[17]
|
Gill, M. and Steglich, W. (1987) Pigments of Fungi (Macromycetes). In: Herz, W., Grisebach, H., Kirby, G.W. and Tamm, C., Eds., Progress in the Chemistry of Organic Natural Products, Vol. 51, Springer, New York, 1-297.
https://doi.org/10.1007/978-3-7091-6971-1_1
|
[18]
|
Gandía-Herrero, F. and García-Carmona, F. (2013) Biosynthesis of Betalains: Yellow and Violet Plant Pigments. Trends in Plant Science, 18, 334-343.
https://doi.org/10.1016/j.tplants.2013.01.003
|
[19]
|
Li, G., Meng, X., Zhu, M. and Li, Z. (2019) Research Progress of Betalain in Response to Adverse Stresses and Evolutionary Relationship Compared with Anthocyanin. Molecules, 24, 3078. https://doi.org/10.3390/molecules24173078
|
[20]
|
Jain, G. and Gould, K.S. (2015) Are Betalain Pigments the Functional Homologues of Anthocyanins in Plants? Environmental and Experimental Botany, 119, 48-53.
https://doi.org/10.1016/j.envexpbot.2015.06.002
|
[21]
|
Polturaka, G., Grossmana, N., Vela-Corciab, D., Donga, Y., Nudelc, A., Plinera, M., Levyb, M., Rogacheva, I. and Aharonia, A. (2017) Engineered Gray Mold Resistance, Antioxidant Capacity, and Pigmentation in Betalain-Producing Crops and Ornamentals. Proceedings of the National Academy of Sciences, 114, 9062-9067.
https://doi.org/10.1073/pnas.1707176114
|
[22]
|
Sepulveda-Jimenez, G., Rueda-Benitez, P., Porta, H. and Rocha-Sosa, M. (2005) A Red Beet (Beta vulgaris) UDP-Glucosyltransferase Gene Induced by Wounding, Bacterial Infiltration and Oxidative Stress. Journal of Experimental Botany, 56, 605-611. https://doi.org/10.1093/jxb/eri036
|
[23]
|
Brockington, S.F., Walker, R.H., Glover, B.J., Soltis, P.S. and Soltis, D.E. (2011) Complex Pigment Evolution in the Caryophyllales. New Phytologist, 190, 854-864.
https://doi.org/10.1111/j.1469-8137.2011.03687.x
|
[24]
|
Weaver, M.A., Lyn, M.E., Boyette, C.D. and Hoagland, R.E. (2007) Bioherbicides for Weed Control. In: Upadhyaya, M.K. and Blackshaw, R.E., Eds., Non-Chemical Weed Management, CAB International, New York, 93-110.
https://doi.org/10.1079/9781845932909.0093
|
[25]
|
Duke, S.O, Scheffler, B.E., Boyette, C.D. and Dayan, F.E. (2015) Biotechnology in Weed Control. In: Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 1-25. https://doi.org/10.1002/0471238961.herbduke.a01.pub2
|
[26]
|
Hoagland, R.E. and Boyette, C.D. (2016) Controlling Herbicide-Susceptible, -Tolerant and -Resistant Weeds with Microbial Bioherbicides. Outlooks on Pest Management, 27, 256-266. https://doi.org/10.1564/v27_dec_04
|
[27]
|
Walker, H.L. and Tilley, A.M. (1997) Evaluation of an Isolate of Myrothecium verrucaria from Sicklepod (Senna obtusifolia) as a Potential Mycoherbicide Agent. Biological Control, 10, 104-112. https://doi.org/10.1006/bcon.1997.0559
|
[28]
|
Anderson, K.I. and Hallett, S.G. (2004) Herbicidal Spectrum and Activity of Myrothecium verrucaria. Weed Science, 52, 623-627.
https://doi.org/10.1614/WS-03-101R1
|
[29]
|
Hoagland, R.E., Weaver, M.A. and Boyette, C.D. (2007) Myrothecium verrucaria: Bioherbicide, and Strategies to Reduce Its Non-Target Risks. Allelopathy Journal, 19, 179-192.
|
[30]
|
Boyette, C.D., Walker, H.L. and Abbas, H.K. (2002) Biological Control of Kudzu (Pueraria lobata) with an Isolate of Myrothecium verrucaria. Biocontrol Science and Technology, 12, 75-82. https://doi.org/10.1080/09583150120093031
|
[31]
|
Boyette, C.D. and Hoagland, R.E. (2007) Evaluation of the Bioherbicide Myrothecium verrucaria for Weed Control in Tomato (Lycopersicon esculentum). Biocontrol Science and Technology, 17, 171-178.
https://doi.org/10.1080/09583150600937451
|
[32]
|
Hoagland, R.E., McCallister, T.S., Boyette, C.D., Weaver, M.A. and Beecham, R.V. (2011) Effects of Myrothecium verrucaria on Morning-Glory (Ipomoea) Species. Allelopathy Journal, 27, 151-162.
|
[33]
|
Boyette, C.D., Hoagland, R.E. and Stetina, K.C. (2014) Biological Control of the Weed Hemp Sesbania (Sesbania exaltata) in Rice (Oryza sativa) by the Fungus Myrothecium verrucaria. Agronomy, 4, 74-89.
https://doi.org/10.3390/agronomy4010074
|
[34]
|
Hoagland, R.E., Teaster, N.D. and Boyette, C.D. (2013) Bioherbicidal Effects of Myrothecium verrucaria on Glyphosate-Resistant and -Susceptible Palmer amaranth Biotypes. Allelopathy Journal, 31, 367-376.
|
[35]
|
Hoagland, R.E., Boyette, C.D., Jordan, R.H. and Stetina, K.C. (2018) Interaction of the Bioherbicide Myrothecium verrucaria with Technical-Grade Glyphosate on Glyphosate-Susceptible and -Resistant Palmer amaranth. American Journal of Plant Sciences, 9, 2306-2319. https://doi.org/10.4236/ajps.2018.911167
|
[36]
|
Boyette, C.D., Reddy, K.N. and Hoagland, R.E. (2006) Glyphosate and Bioherbicide Interaction for Controlling Kudzu (Pueraria lobata), Redvine (Brunnichia ovata), and Trumpetcreeper (Campsis radicans). Biocontrol Science and Technology, 16, 1067-1077. https://doi.org/10.1080/09583150600828742
|
[37]
|
Boyette, C.D., Hoagland, R.E., Weaver, M.A. and Reddy, K.N. (2008) Redvine (Brunnichia ovata) and Trumpetcreeper (Campsis radicans) Controlled under Field Conditions by a Synergistic Interaction of the Bioherbicide, Myrothecium verrucaria with Glyphosate. Weed Biology and Management, 8, 39-45.
https://doi.org/10.1111/j.1445-6664.2007.00272.x
|
[38]
|
Boyette, C.D., Hoagland, R.E., Weaver, M.A. and Stetina, K.C. (2014) Interaction of the Bioherbicide Myrothecium verrucaria and Glyphosate for Kudzu Control. American Journal of Plant Sciences, 5, 3943-3956.
https://doi.org/10.4236/ajps.2014.526413
|
[39]
|
Peng, G. and Wolf, T.M. (2011) Synergy between Synthetic and Microbial Herbicides for Weed Control. Pest Technology, 5, 18-27.
|
[40]
|
Sharon, A., Amsellem, Z. and Gressel, J. (1992) Glyphosate Suppression of an Elicited Defense Response. Increased Susceptibility of Cassia obtusifolia to a Mycoherbicide. Plant Physiology, 98, 654-659. https://doi.org/10.1104/pp.98.2.654
|
[41]
|
Cai, Y., Sun, M. and Corke, H. (2005) HPLC Characterization of Betalains from Plants in the Amaranthaceae. Journal of Chromatographic Science, 43, 454-460.
https://doi.org/10.1093/chromsci/43.9.454
|
[42]
|
Teaster, N.D. and Hoagland, R.E. (2014) Genomic Stability of Palmer amaranth Plants Derived by Macro-Vegetative Propagation. American Journal of Plant Sciences, 5, 3302-3310. https://doi.org/10.4236/ajps.2014.521345
|
[43]
|
Teaster, N.D. and Hoagland, R.E. (2014) Characterization of Glyphosate Resistance in Cloned Amaranthus palmeri Plants. Weed Biology and Management, 14, 1-10.
https://doi.org/10.1111/wbm.12024
|
[44]
|
Boyette, C.D., Weaver, M.A., Hoagland, R.E. and Stetina, K.C. (2008) Submerged Culture of a Mycelial Formulation of a Bioherbicidal Strain of Myrothecium verrucaria with Mitigated Mycotoxin Production. World Journal of Microbiology and Biotechnology, 24, 2721-2726. https://doi.org/10.1007/s11274-008-9759-6
|
[45]
|
Horsfall, J.G. and Barratt, R.W. (1945) An Improved Grading System for Measuring Diseases. Phytopathology, 35, 655.
|
[46]
|
Nakashima, T., Araki, T. and Ueno, O. (2011) Photoprotective Function of Betacyanin in Leaves of Amaranthus cruentus L. under Water Stress. Photosynthetica, 49, 497-506. https://doi.org/10.1007/s11099-011-0062-7
|
[47]
|
Jain, G. and Gould, K.S. (2015) Functional Significance of Betalain Biosynthesis in Leaves of Disphyma australe under Salinity Stress. Environmental and Experimental Botany, 109, 131-140. https://doi.org/10.1016/j.envexpbot.2014.09.002
|
[48]
|
Jain, G., Schwinn, K.E. and Gould, K.S. (2015) Betalain Induction by l-DOPA Application Confers Photoprotection to Saline-Exposed Leaves of Disphyma australe. New Phytologist, 207, 1075-1083. https://doi.org/10.1111/nph.13409
|
[49]
|
Piattelli, M., Giudici de Nicola, M. and Castrogiovanni, V. (1969) Photocontrol of Amaranthin Synthesis in Amaranthus tricolor. Phytochemistry, 8, 731-736.
https://doi.org/10.1016/S0031-9422(00)85844-6
|
[50]
|
Kishima, Y., Shimaya, A. and Adachi, T. (1995) Evidence That Blue Light Induces Betalain Pigmentation in Portulaca callas. Plant Cell, Tissue and Organ Culture, 43, 67-70. https://doi.org/10.1007/BF00042673
|
[51]
|
Vogt, T., Ibdah, M., Schmidt, J., Wray, V., Nimtz, M. and Strack, D. (1999) Light-Induced Betacyanin and Flavonol Accumulation in Bladder Cells of Mesembryanthemum crystallinum. Phytochemistry, 52, 583-592.
https://doi.org/10.1016/S0031-9422(99)00151-X
|
[52]
|
Ibdah, M., Krins, A., Seidlitz, H.K., Heller, W., Strack, D. and Vogt, T. (2002) Spectral Dependence of Flavonol and Betacyanin Accumulation in Mesembryanthemum crystallinum under Enhanced Ultraviolet Radiation. Plant Cell and Environment, 25, 1145-1154. https://doi.org/10.1046/j.1365-3040.2002.00895.x
|