[1]
|
Shen, W., Ni, Y., Gao, N., Bian, B., Zheng, S., Lin, X. and Chu, H. (2016) Bacterial Community Composition Is Shaped by Soil Secondary Salinization and Acidification Brought on by High Nitrogen Fertilization Rates. Applied Soil Ecology, 108, 76-83. https://doi.org/10.1016/j.apsoil.2016.08.005
|
[2]
|
Bashagaluke, J.B., Logah, V., Opoku, A., Sarkodie-Addo, J. and Quansah, C. (2018) Soil Nutrient Loss through Erosion: Impact of Different Cropping Systems and Soil Amendments in Ghana. PLoS ONE, 13, e0208250.
https://doi.org/10.1371/journal.pone.0208250
|
[3]
|
Monroe, J.G., Powell, T., Price, N., Mullen, J.L., Howard, A., Evans, K., Lovell, J.T. and McKay, J.K. (2018) Drought Adaptation in Arabidopsis thaliana by Extensive Genetic Loss-of-Function. Elife, 7, e41038. https://doi.org/10.7554/eLife.41038
|
[4]
|
Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B. and Naylor, R.L. (2018) Increase in Crop Losses to Insect Pests in a Warming Climate. Science, 361, 916-919. https://doi.org/10.1126/science.aat3466
|
[5]
|
Poveda, K., Díaz, M.F. and Ramirez, A. (2018) Can Overcompensation Increase Crop Production? Ecology, 99, 270-280. https://doi.org/10.1002/ecy.2088
|
[6]
|
Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. (2000) Engineering the Provitamin A (Beta-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science, 287, 303-305.
https://doi.org/10.1126/science.287.5451.303
|
[7]
|
Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L. and Drake, R. (2005) Improving the Nutritional Value of Golden Rice through Increased Pro-Vitamin A Content. Nature Biotechnology, 23, 482-487. https://doi.org/10.1038/nbt1082
|
[8]
|
Federico, M.L. and Schmidt, M.A. (2016) Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds. Sub-Cellular Biochemistry, 79, 345-358. https://doi.org/10.1007/978-3-319-39126-7_13
|
[9]
|
Carzoli, A.K., Aboobucker, A.I., Sandall, L.L., Lübberstedt, T.T. and Suza, W.P. (2018) Risks and Opportunities of GM Crops: Bt Maize Example. Global Food Security, 19, 84-91. https://doi.org/10.1016/j.gfs.2018.10.004
|
[10]
|
Huang, J., Hu, R., Rozelle, S. and Pray, C. (2005) Insect-Resistant GM Rice in Farmers’ Fields: Assessing Productivity and Health Effects in China. Science, 308, 688-690. https://doi.org/10.1126/science.1108972
|
[11]
|
Wei, X.D., Zou, H.L., Chu, L.M., Liao, B., Ye, C.M. and Lan, C.Y. (2006) Field Released Transgenic Papaya Affects Microbial Communities and Enzyme Activities in Soil. Plant and Soil, 285, 347-358. https://doi.org/10.1007/s11104-006-9020-8
|
[12]
|
Smyth, S.J. (2017) Genetically Modified Crops, Regulatory Delays, and International Trade. Food and Energy Security, 6, 78-86. https://doi.org/10.1002/fes3.100
|
[13]
|
Rocha-Munive, M.G., Soberón, M., Castañeda, S., Niaves, E., Scheinvar, E., Eguiarte, L.E., Mota-Sánchez, D., Rosales-Robles, E., Nava-Camberos, U., Martínez-Carrillo, J.L., Blanco, C.A., Bravo, A. and Souza, V. (2018) Evaluation of the Impact of Genetically Modified Cotton after 20 Years of Cultivation in Mexico. Frontiers in Bioengineering and Biotechnology, 6, 82.
https://doi.org/10.3389/fbioe.2018.00082
|
[14]
|
Sun, N., Abil, Z. and Zhao, H. (2012) Recent Advances in Targeted Genome Engineering in Mammalian Systems. Biotechnology Journal, 7, 1074-1087.
https://doi.org/10.1002/biot.201200038
|
[15]
|
Belhaj, K., Chaparro-Garcia, A., Kamoun, S. and Nekrasov, V. (2013) Plant Genome Editing Made Easy: Targeted Mutagenesis in Model and Crop Plants Using the CRISPR/Cas System. Plant Methods, 9, 39. https://doi.org/10.1186/1746-4811-9-39
|
[16]
|
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. and Zhang, F. (2013) Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339, 819-823.
https://doi.org/10.1126/science.1231143
|
[17]
|
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E. and Church, G.M. (2013) RNA-Guided Human Genome Engineering via Cas9. Science, 339, 823-826. https://doi.org/10.1126/science.1232033
|
[18]
|
Segall, A. (2001) Site-Specific Recombination. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., New York. https://doi.org/10.1038/npg.els.0001058
|
[19]
|
Esposito, D. and Scocca, J.J. (1997) The Integrase Family of Tyrosine Recombinases: Evolution of a Conserved Active Site Domain. Nucleic Acids Research, 25, 3605-3614. https://doi.org/10.1093/nar/25.18.3605
|
[20]
|
Smith, M.C.M. and Thorpe, H.M. (2002) Diversity in the Serine Recombinases. Molecular Microbiology, 44, 299-307.
https://doi.org/10.1046/j.1365-2958.2002.02891.x
|
[21]
|
McLellan, M.A., Rosenthal, N.A. and Pinto, A.R. (2017) Cre-loxP-Mediated Recombination: General Principles and Experimental Considerations. Current Protocols in Mouse Biology, 7, 1-12. https://doi.org/10.1002/cpmo.22
|
[22]
|
Bala, A., Roy, A., Das, A., Chakraborti, D. and Das, S. (2013) Development of Selectable Marker Free, Insect Resistant, Transgenic Mustard (Brassica juncea) Plants Using Cre/lox Mediated Recombination. BMC Biotechnology, 13, 88.
https://doi.org/10.1186/1472-6750-13-88
|
[23]
|
Sreekala, C., Wu, L., Gu, K., Wang, D., Tian, D. and Yin, Z. (2005) Excision of a Selectable Marker in Transgenic Rice (Oryza sativa L.) Using a Chemically Regulated Cre/loxP System. Plant Cell Reports, 24, 86-94.
https://doi.org/10.1007/s00299-004-0909-5
|
[24]
|
Cuellar, W., Gaudin, A., Solórzano, D., Casas, A., Ñopo, L., Chudalayandi, P., Medrano, G., Kreuze, J. and Ghislain, M. (2006) Self-Excision of the Antibiotic Resistance Gene NPTII Using a Heat Inducible Cre/loxP System from Transgenic Potato. Plant Molecular Biology, 62, 71-82. https://doi.org/10.1007/s11103-006-9004-3
|
[25]
|
Zhang, Y., Li, H., Ouyang, B., Lu, Y. and Ye, Z. (2006) Chemical-Induced Auto Excision of Selectable Markers in Elite Tomato Plants Transformed with a Gene Conferring Resistance to Lepidopteran Insects. Biotechnology Letters, 28, 1247-1253.
https://doi.org/10.1007/s10529-006-9081-z
|
[26]
|
Yu, W., Han, F., Gao, Z., Vega, J.M. and Birchler, J.A. (2007) Construction and Behavior of Engineered Minichromosomes in Maize. Proceedings of the National Academy of Sciences of the United States of America, 104, 8924-8929.
https://doi.org/10.1073/pnas.0700932104
|
[27]
|
Xu, C., Cheng, Z. and Yu, W. (2011) Construction of Rice Mini-Chromosomes by Telomere-Mediated Chromosomal Truncation. Plant Journal, 70, 1070-1079.
https://doi.org/10.1111/j.1365-313X.2012.04916.x
|
[28]
|
Radhakrishnan, P. and Srivastava, V. (2005) Utility of the FLP-FRT Recombination System for Genetic Manipulation of Rice. Plant Cell Reports, 23, 721-726.
https://doi.org/10.1007/s00299-004-0876-x
|
[29]
|
Djukanovic, V., Orczyk, W., Gao, H., Sun, X., Garrett, N., Zhen, S., Gordon-Kamm, W., Barton, J. and Lyznik, L.A. (2006) Gene Conversion in Transgenic Maize Plants Expressing FLP/FRT and Cre/loxP Site-Specific Recombination Systems. Plant Biotechnology Journal, 4, 345-357. https://doi.org/10.1111/j.1467-7652.2006.00186.x
|
[30]
|
Würdig, J., Flachowsky, H., Saß, A., Peil, A. and Hanke, M.V. (2015) Improving Resistance of Different Apple Cultivars Using the Rvi6 Scab Resistance Gene in a Cisgenic Approach Based on the Flp/FRT Recombinase System. Molecular Breeding, 35, 95. https://doi.org/10.1007/s11032-015-0291-8
|
[31]
|
Kapusi, E., Kempe, K., Rubtsova, M., Kumlehn, J. and Gils, M. (2012) PhiC31 Integrase-Mediated Site-Specific Recombination in Barley. PLoS ONE, 7, e45353.
https://doi.org/10.1371/journal.pone.0045353
|
[32]
|
éva, C., Téglás, F., Zelenyánszki, H., Tamás, C., Juhász, A., Mészáros, K. and László Tamás, L. (2018) Cold Inducible Promoter Driven Cre-Lox System Proved to Be Highly Efficient for Marker Gene Excision in Transgenic Barley. Journal of Biotechnology, 265, 15-24. https://doi.org/10.1016/j.jbiotec.2017.10.016
|
[33]
|
Costa, L.D., Piazza, S., Campa, M., Flachowsky, H., Hanke, M.V. and Malnoy, M. (2016) Efficient Heat-Shock Removal of the Selectable Marker Gene in Genetically Modified Grapevine. Plant Cell, Tissue and Organ Culture, 124, 471-481.
https://doi.org/10.1007/s11240-015-0907-z
|
[34]
|
Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S., Trewyn, B.G., Lyznik, L.A. and Wang, K. (2014) Mesoporous Silica Nanoparticle-Mediated Intracellular Cre Protein Delivery for Maize Genome Editing via loxP Site Excision. Plant Physiology, 164, 537-547. https://doi.org/10.1104/pp.113.233650
|
[35]
|
Du, D., Jin, R., Guo, J. and Zhang, F. (2019) Construction of Marker-Free Genetically Modified Maize Using a Heat-Inducible Auto-Excision Vector. Genes, 10, E374.
https://doi.org/10.3390/genes10050374
|
[36]
|
Boszorádová, E., Matušíková, I., Libantová, J., Zimová, M. and Moravčíková, J. (2019) Cre-Mediated Marker Gene Removal for Production of Biosafe Commercial Oilseed Rape. Acta Physiologiae Plantarum, 41, 73.
https://doi.org/10.1007/s11738-019-2865-2
|
[37]
|
Peng, A., Xu, L., He, Y., Lei, T., Yao, L., Chen, S. and Zou, X. (2015) Efficient Production of Marker-Free Transgenic ‘Tarocco’ Blood Orange (Citrus sinensis Osbeck) with Enhanced Resistance to Citrus Canker Using a Cre/loxP Site-Recombination System. Plant Cell, Tissue and Organ Culture, 123, 1-13.
https://doi.org/10.1007/s11240-015-0799-y
|
[38]
|
Kopertekh, L. and Schiemann, J. (2017) Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X. Methods in Molecular Biology, 1642, 151-168. https://doi.org/10.1007/978-1-4939-7169-5_10
|
[39]
|
Chen, H., Luo, J., Zheng, P., Zhang, X., Zhang, C., Li, X., Wang, M., Huang, Y., Liu, X., Jan, M., Liu, Y., Hu, P. and Tu, J. (2017) Application of Cre-Lox Gene Switch to Limit the Cry Expression in Rice Green Tissues. Scientific Reports, 7, 14505.
https://doi.org/10.1038/s41598-017-14679-0
|
[40]
|
Woo, H.J., Qin, Y., Park, S.Y., Park, S.K., Cho, Y.G., Shin, K.S., Lim, M.H. and Cho, H.S. (2015) Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision. PLoS ONE, 10, e0132667.
https://doi.org/10.1371/journal.pone.0132667
|
[41]
|
Zhang, X., Dong, Q., Qiao, X., Qiao, Y., Wang, B., Zhang, K. and Li, G. (2019) Creation and Analysis of Marker Free Transgenic Soybean Germplasm with Low Phosphate Tolerance Transcription Factor GmPTF1 Based on Cre/loxP System. Acta Agronomica Sinica, 45, 683-692.
http://kns.cnki.net/kcms/detail/11.1809.S.20190115.1603.004.html
|
[42]
|
Zheng, Y., Pan, Y., Li, J., Zhou, Y, Pan, Y., Ding, Y., Su, C. and Zhang, X. (2016) Visible Marker Excision via Heat-Inducible Cre/LoxP System and Ipt Selection in Tobacco. In Vitro Cellular & Developmental Biology-Plant, 52, 492-499.
https://doi.org/10.1007/s11627-016-9775-4
|
[43]
|
Moon, H., Abercrombie, L., Eda, S., Blanvillain, R., Thomson, J., Ow, D. and Stewart Jr., C.N. (2011) Transgene Excision in Pollen Using a Codon Optimized Serine Resolvase CinH-RS2 Site-Specific Recombination System. Plant Molecular Biology, 75, 621-631. https://doi.org/10.1007/s11103-011-9756-2
|
[44]
|
Shao, M., Blechl, A. and Thomson, J.G. (2017) Small Serine Recombination Systems ParA-MRS and CinH-RS2 Perform Precise Excision of Plastid DNA. Plant Biotechnology Journal, 15, 1577-1589. https://doi.org/10.1111/pbi.12740
|
[45]
|
Mészáros, K., éva, C., Kiss, T., Bányai, J., Kiss, E., Téglás, F., Karsai, L.L. and Tamás, L. (2015) Generating Marker-Free Transgenic Wheat Using Minimal Gene Cassette and Cold-Inducible Cre/Lox System. Plant Molecular Biology Reporter, 33, 1221-1231. https://doi.org/10.1007/s11105-014-0830-1
|
[46]
|
Anand, A., Wu, E., Li, Z., TeRonde, S., Arling, M., Lenderts, B., Mutti, J.S., Gordon-Kamm, W., Jones, T.J. and Chilcoat, N.D. (2019) High Efficiency Agrobacterium-Mediated Site-Specific Gene Integration in Maize Utilizing the FLP-FRT Recombination System. Plant Biotechnology Journal, 17, 1636-1645.
https://doi.org/10.1111/pbi.13089
|
[47]
|
Yan, X., Li, C., Yang, J., Wang, L., Jiang, C. and Wei, W. (2017) Induction of Telomere-Mediated Chromosomal Truncation and Behavior of Truncated Chromosomes in Brassica napus. Plant Journal, 91, 700-713.
https://doi.org/10.1111/tpj.13598
|
[48]
|
Chawla, R., Ariza-Nieto, M., Wilson, A.J., Moore, S.K. and Srivastava, V. (2006) Transgene Expression Produced by Biolistic-Mediated, Site-Specific Gene Integration Is Consistently Inherited by the Subsequent Generations. Plant Biotechnology Journal, 4, 209-218. https://doi.org/10.1111/j.1467-7652.2005.00173.x
|
[49]
|
Srivastava, V. (2019) Gene Stacking in Plants through the Application of Site-Specific Recombination and Nuclease Activity. Methods in Molecular Biology, 1864, 267-277. https://doi.org/10.1007/978-1-4939-8778-8_18
|
[50]
|
Li, Z., Xing, A., Moon, B.P., McCardell, R.P., Mills, K. and Falco, S.C. (2009) Site-Specific Integration of Transgenes in Soybean via Recombinase-Mediated DNA Cassette Exchange. Plant Physiology, 151, 1087-1095.
https://doi.org/10.1104/pp.109.137612
|
[51]
|
Ebinuma, H., Nakahama, K. and Nanto, K. (2015) Enrichments of Gene Replacement Events by Agrobacterium-Mediated Recombinase-Mediated Cassette Exchange. Molecular Breeding, 35, 82. https://doi.org/10.1007/s11032-015-0215-7
|
[52]
|
Vibha Srivastava, V. and Gidoni, D. (2010) Site-Specific Gene Integration Technologies for Crop Improvement. In Vitro Cellular & Developmental Biology-Plant, 46, 219-232. https://doi.org/10.1007/s11627-009-9274-y
|
[53]
|
Beerli, R.R. and Barbas, C.F. (2002) Engineering Polydactyl Zinc-Finger Transcription Factors. Nature Biotechnology, 20, 135-141.
https://doi.org/10.1038/nbt0202-135
|
[54]
|
Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., Wang, N., Lee, G., Bartsevich, V.V., Lee, Y.L., Guschin, D.Y., Rupniewski, I., Waite, A.J., Carpenito, C., Carroll, R.G., Orange, J.S., Urnov, F.D., Rebar, E.J., Ando, D., Gregory, P.D., Riley, J.L., Holmes, M.C. and June, C.H. (2008) Establishment of HIV-1 Resistance in CD4+ T Cells by Genome Editing Using Zinc-Finger Nucleases. Nature Biotechnology, 26, 808-816. https://doi.org/10.1038/nbt1410
|
[55]
|
Holt, N., Wang, J., Kim, K., Friedman, G., Wang, X., Taupin, V., Crooks, G.M., Kohn, D.B., Gregory, P.D., Holmes, M.C. and Cannon, P.M. (2010) Human Hematopoietic Stem/Progenitor Cells Modified by Zinc-Finger Nucleases Targeted to CCR5 Control HIV-1 in Vivo. Nature Biotechnology, 28, 839-847.
https://doi.org/10.1038/nbt.1663
|
[56]
|
Shukla, V.K., Doyon, Y., Miller, J.C., DeKelver, R.C., Moehle, E.A., Worde, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Gao, Z., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwalt, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregory, P.D. and Urnov, F.D. (2009) Precise Genome Modification in the Crop Species Zea mays Using Zinc-Finger Nucleases. Nature, 459, 437-441. https://doi.org/10.1038/nature07992
|
[57]
|
Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S.Y., Bhagwat, A.S., Malani, N., Anguela, X.M., Sharma, R., Ivanciu, L., Murphy, S.L., Finn, J.D., Khazi, F.R., Zhou, S., Paschon, D.E., Rebar, E.J., Bushman, F.D., Gregory, P.D., Holmes, M.C. and High, K.A. (2011) In Vivo Genome Editing Restores Homostasis in a Mouse Model of Haemophilia. Nature, 475, 217-221. https://doi.org/10.1038/nature10177
|
[58]
|
Zou, J., Mali, P., Huang, X., Dowey, S.N. and Cheng, L. (2011) Site-Specific Gene Correction of a Point Mutation in Human iPS Cells Derived from an Adult Patient with Sickle Cell Disease. Blood, 118, 4599-4608.
https://doi.org/10.1182/blood-2011-02-335554
|
[59]
|
Soldner, F., Laganière, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., Zhang, L., Guschin, D., Fong, L.K., Vu, B.J., Meng, X., Urnov, F.D., Gregory, P.D., Zhang, H.S. and Jaenisch, R. (2011) Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. Cell, 146, 659.
https://doi.org/10.1016/j.cell.2011.06.019
|
[60]
|
Cai, C.Q., Doyon, Y., Ainley, W.M., Miller, J.C., DeKelver, R.C., Moehle, E.A., Rock, J.M., Lee, Y., Garrison, R., Schulenberg, L., Blue, R., Worden, A., Baker, L., Faraji, F., Zhang, L., Holmes, M.C., Rebar, E.J., Collingwood, T.N., Rubin-Wilson, B., Gregory, P.D., Urnov, F.D. and Petolino, J.F. (2009) Targeted Transgene Integration in Plant Cells Using Designed Zinc Finger Nucleases. Plant Molecular Biology, 69, 699-709. https://doi.org/10.1007/s11103-008-9449-7
|
[61]
|
Kelly, K.F. and Daniel, J.M. (2006) POZ for Effect-POZ-ZF Transcription Factors in Cancer and Development. Trends in Cell Biology, 16, 578-587.
https://doi.org/10.1016/j.tcb.2006.09.003
|
[62]
|
Peer, R., Rivlin, G., Golobovitch, S., Lapidot, M., Gal-On, A., Vainstein, A., Tzfira, T. and Flaishman, M.A. (2015) Targeted Mutagenesis Using Zinc-Finger Nucleases in Perennial Fruit Trees. Planta, 241, 941-951.
https://doi.org/10.1007/s00425-014-2224-x
|
[63]
|
Lu, H.W., Klocko, A.L., Dow, M., Ma, C., Amarasinghe, V. and Strauss, S.H. (2016) Low Frequency of Zinc-Finger Nuclease-Induced Mutagenesis in Populus. Molecular Breeding, 36, 121. https://doi.org/10.1007/s11032-016-0546-z
|
[64]
|
Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K. and Voytas, D.F. (2009) High-Frequency Modification of Plant Genes Using Engineered Zinc-Finger Nucleases. Nature, 459, 442-445. https://doi.org/10.1038/nature07845
|
[65]
|
Petolino, J.F., Worden, A., Curlee, K., Connell, J., Strange Moynahan, T.L., Larsen, C. and Russell, S. (2010) Zinc Finger Nuclease-Mediated Transgene Deletion. Plant Molecular Biology, 73, 617-628. https://doi.org/10.1007/s11103-010-9641-4
|
[66]
|
Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman AP, Dobbs, D., Joung, J.K., Voytas, D.F. and Stupar, R.M. (2011) Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases. Plant Physiology, 156, 466-473.
https://doi.org/10.1104/pp.111.172981
|
[67]
|
Ainley, W.M., Sastry-Dent, L., Welter, M.E., Murray, M.G., Zeitler, B., Amora, R., Corbin, D.R., Miles, R.R., Arnold, N.L., Strange, T.L., Simpson, M.A., Cao, Z., Carroll, C., Pawelczak, K.S., Blue, R., West, K., Rowland, L.M., Perkins, D., Samuel, P., Dewes, C.M., Shen, L., Sriram, S., Evans, S.L., Rebar, E.J., Zhang, L., Gregory, P.D., Urnov, F.D., Webb, S.R. and Petolino, J.F. (2013) Trait Stacking via Targeted Genome Editing. Plant Biotechnology Journal, 11, 1126-1134.
https://doi.org/10.1111/pbi.12107
|
[68]
|
Kumar, S., AlAbed. D., Worden, A., Novak, S., Wu, H., Ausmus, C., Beck, M., Robinson, H., Minnicks, T., Hemingway, D., Lee, R., Skaggs, N., Wang, L., Marri, P. and Gupta, M. (2015) A Modular Gene Targeting System for Sequential Transgene Stacking in Plants. Journal of Biotechnology, 207, 12-20.
https://doi.org/10.1016/j.jbiotec.2015.04.006
|
[69]
|
Kumar, S., Worden, A., Novak, S., Lee, R. and Petolino, J.F. (2016) A Trait Stacking System via Intragenomic Homologous Recombination. Planta, 244, 1157-1166.
https://doi.org/10.1007/s00425-016-2595-2
|
[70]
|
Cantos, C., Francisco, P., Trijatmiko, K.R., Slamet-Loedin, I. and Chadha-Mohanty, P.K. (2014) Identification of “Safe Harbor” Loci in Indica Rice Genome by Harnessing the Property of Zinc Finger Nucleases to Induce DNA Damage and Repair. Frontiers in Plant Science, 5, 302. https://doi.org/10.3389/fpls.2014.00302
|
[71]
|
Bonawitz, N.D., Ainley, W.M., Itaya, A., Chennareddy, S.R., Cicak, T., Effinger, K., Jiang, K., Mall, T.K., Marri, P.R., Samuel, J.P., Sardesai, N., Simpson, M., Folkerts, O., Sarria, R., Webb, S.R., Gonzalez, D.O., Simmonds, D.H. and Pareddy, D.R. (2019) Zinc Finger Nuclease-Mediated Targeting of Multiple Transgenes to an Endogenous Soybean Genomic Locus via Non-Homologous End Joining. Plant Biotechnology Journal, 17, 750-761. https://doi.org/10.1111/pbi.13012
|
[72]
|
Schneider, K., Schiermeyer, A., Dolls, A., Koch, N., Herwartz, D., Kirchhoff, J., Fischer, R., Russell, S.M., Cao, Z.H., Corbin, D.R., Sastry-Dent, L., Ainley, W.M., Webb, S.R., Schinkel, H. and Schillberg, S. (2016) Targeted Gene Exchange in Plant Cells Mediated by a Zinc Finger Nuclease Double Cut. Plant Biotechnology Journal, 14, 1151-1160. https://doi.org/10.1111/pbi.12483
|
[73]
|
Gupta, M., DeKelver, R.C., Palta, A., Clifford, C., Gopalan, S., Miller, J.C., Novak, S., Desloover, D., Gachotte, D., Connell, J., Flook, J., Patterson, T., Robbins, K., Rebar, E.J., Gregory, P.D., Urnov, F.D. and Petolino, J.F. (2012) Transcriptional Activation of Brassica napus Beta-Ketoacyl-ACP Synthase II with an Engineered Zinc Finger Protein Transcription Factor. Plant Biotechnology Journal, 10, 783-791.
https://doi.org/10.1111/j.1467-7652.2012.00695.x
|
[74]
|
Rinaldo, A.R. and Ayliffe, M. (2015) Gene Targeting and Editing in Crop Plants: A New Era of Precision Opportunities. Molecular Breeding, 35, 40.
https://doi.org/10.1007/s11032-015-0210-z
|
[75]
|
Gaj, T., Gersbach, C.A. and Barbas, C.F. (2013) ZFN, TALEN and CRISPR/Cas-Based Methods for Genome Engineering. Trends in Biotechnology, 31, 397-405.
https://doi.org/10.1016/j.tibtech.2013.04.004
|
[76]
|
Li, T., Liu, B., Spalding, M.H., Weeks, D.P. and Yang, B. (2012) High-Efficiency TALEN-Based Gene Editing Produces Disease-Resistant Rice. Nature Biotechnology, 30, 390-392. https://doi.org/10.1038/nbt.2199
|
[77]
|
Shan, Q., Zhang, Y., Chen, K., Zhang, K. and Gao, C. (2015) Creation of Fragrant Rice by Targeted Knockout of the OsBADH2 Gene Using TALEN Technology. Plant Biotechnology Journal, 13, 791-800. https://doi.org/10.1111/pbi.12312
|
[78]
|
Gao, X., Tsang, J.C., Gaba, F., Wu, D., Lu, L. and Liu, P. (2014) Comparison of TALE Designer Transcription Factors and the CRISPR/dCas9 in Regulation of Gene Expression by Targeting Enhancers. Nucleic Acids Research, 42, e155.
https://doi.org/10.1093/nar/gku836
|
[79]
|
Sun, Z., Li, N., Huang, G., Xu, J., Pan, Y., Wang, Z., Tang, Q., Song, M. and Wang, X. (2013) Site-Specific Gene Targeting Using Transcription Activator-Like Effector (TALE)-Based Nuclease in Brassica oleracea. Journal of Integrative Plant Biology, 55, 1092-1103. https://doi.org/10.1111/jipb.12091
|
[80]
|
Char, S.N., Unger-Wallace, E., Frame, B., Briggs, S.A., Main, M., Spalding, M.H., Spalding, M.H., Vollbrecht, E., Wang, K. and Yang, B. (2015) Heritable Site-Specific Mutagenesis Using TALENs in Maize. Plant Biotechnology Journal, 13, 1002-1010.
https://doi.org/10.1111/pbi.12344
|
[81]
|
Kelliher, T., Starr, D., Richbourg, L., Chintamanani, S., Delzer, B., Nuccio, M.L., Green, J., Chen, Z., McCuiston, J., Wang, W., Liebler, T., Bullock, P. and Martin, B. (2017) MATRILINEAL, a Sperm-Specific Phospholipase, Triggers Maize Haploid Induction. Nature, 542, 105-109. https://doi.org/10.1038/nature20827
|
[82]
|
Wen, S., Liu, H., Li, X., Chen, X., Hong, Y., Li, H., Lu, Q. and Liang, X. (2018) TALEN-Mediated Targeted Mutagenesis of Fatty Acid Desaturase 2 (FAD2) in Peanut (Arachis hypogaea L.) Promotes the Accumulation of Oleic Acid. Plant Molecular Biology, 97, 177-185. https://doi.org/10.1007/s11103-018-0731-z
|
[83]
|
Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., Muranaka, T., Saito, K. and Umemoto, N. (2014). Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato. Plant Cell, 26, 3763-3774. https://doi.org/10.1105/tpc.114.130096
|
[84]
|
Nicolia, A., Proux-Wéra, E., Åhman, I., Onkokesung, N., Andersson, M., Andreasson, E. and Zhu, L.H. (2015) Targeted Gene Mutation in Tetraploid Potato through Transient TALEN Expression in Protoplasts. Journal of Biotechnology, 204, 17-24.
https://doi.org/10.1016/j.jbiotec.2015.03.021
|
[85]
|
Clasen, B.M., Stoddard, T.J., Luo, S., Demorest, Z.L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E.E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N.J., Mathis, L., Voytas, D.F. and Zhang, F. (2016) Improving Cold Storage and Processing Traits in Potato through Targeted Gene Knockout. Plant Biotechnology Journal, 14, 169-176. https://doi.org/10.1111/pbi.12370
|
[86]
|
Ma, J., Xiang, H., Donnelly, D.J., Meng, F.R., Xu, H., Durnford, D. and Li, X. (2017) Genome Editing in Potato Plants by Agrobacterium-Mediated Transient Expression of Transcription Activator-Like Effector Nucleases. Plant Biotechnology Reports, 11, 249-258. https://doi.org/10.1007/s11816-017-0448-5
|
[87]
|
Blanvillain-Baufume, S., Reschke, M., Sole, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., Guiderdoni, E., Boch, J. and Koebnik, R. (2017) Targeted Promoter Editing for Rice Resistance to Xanthomonas oryzae pv. oryzae Reveals Differential Activities for SWEET14-Inducing TAL Effectors. Plant Biotechnology Journal, 15, 306-317. https://doi.org/10.1111/pbi.12613
|
[88]
|
Jung, J.H. and Altpeter, F. (2016) TALEN Mediated Targeted Mutagenesis of Thecaffeic Acid O-Methyltransferase in Highly Polyploid Sugarcane Improves Cell Wall Composition for Production of Bioethanol. Plant Molecular Biology, 92, 131-142.
https://doi.org/10.1007/s11103-016-0499-y
|
[89]
|
Kannan, B., Jung, J.H., Moxley, G.W., Lee, S.M. and Altpeter, F. (2018) TALEN-Mediated Targeted Mutagenesis of more than 100 COMT Copies/Alleles in Highly Polyploid Sugarcane Improves Saccharification Efficiency without Compromising Biomass Yield. Plant Biotechnology Journal, 16, 856-866.
https://doi.org/10.1111/pbi.12833
|
[90]
|
Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D.F. and Zhang, F. (2014) Improved Soybean Oil Quality by Targeted Mutagenesis of the Fatty Acid Desaturase 2 Gene Family. Plant Biotechnology Journal, 12, 934-940.
https://doi.org/10.1111/pbi.12201
|
[91]
|
Demorest, Z.L., Coffman, A., Baltes, N.J., Stoddard, T.J., Clasen, B.M., Luo, S., Retterath, A., Yabandith, A., Gamo, M.E., Bissen, J., Mathis, L., Voytas, D.F. and Zhang, F. (2016) Direct Stacking of Sequence-Specific Nuclease-Induced Mutations to Produce High Oleic and Low Linolenic Soybean Oil. BMC Plant Biology, 16, 225.
https://doi.org/10.1186/s12870-016-0906-1
|
[92]
|
Zhang, Y., Zhang, F., Li, X., Baller, J.A., Qi, Y., Starker, C.G., Bogdanove, A.J. and Voytas, D.F. (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiology, 161, 20-27.
https://doi.org/10.1104/pp.112.205179
|
[93]
|
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. and Qiu, J.L. (2014) Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. Nature Biotechnology, 32, 947-951.
https://doi.org/10.1038/nbt.2969
|
[94]
|
Budhagatapalli, N., Rutten, T., Gurushidze, M., Kumlehn, J. and Hensel, G. (2015) Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley. G3-Genes Genomes Genetics, 5, 1857-1863. https://doi.org/10.1534/g3.115.018762
|
[95]
|
Butler, N.M., Baltes, N.J., Voytas, D.F. and Douches, D.S. (2016) Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Frontiers in Plant Science, 7, 1045.
https://doi.org/10.3389/fpls.2016.01045
|
[96]
|
Forsyth, A., Weeks, T., Richael, C. and Duan, H. (2016) Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants. Frontiers in Plant Science, 7, 1572. https://doi.org/10.3389/fpls.2016.01572
|
[97]
|
Li, T., Liu, B., Chen, C.Y. and Yang, B. (2016) TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice. Journal of Genetics and Genomics, 43, 297-305.
https://doi.org/10.1016/j.jgg.2016.03.005
|
[98]
|
Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y. and Voytas, D.F. (2015) High-Frequency, Precise Modification of the Tomato Genome. Genome Biology, 16, 232.
https://doi.org/10.1186/s13059-015-0796-9
|
[99]
|
Terns, M.P. and Terns, R.M. (2011) CRISPR-Based Adaptive Immune Systems. Current Opinion in Microbiology, 14, 321-327.
https://doi.org/10.1016/j.mib.2011.03.005
|
[100]
|
Marraffini, L.A. and Sontheimer, E.J. (2008) CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science, 322, 1843-1845.
https://doi.org/10.1126/science.1165771
|
[101]
|
Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, E2579-E2586. https://doi.org/10.1073/pnas.1208507109
|
[102]
|
Wiedenheft, B., van Duijn, E., Bultema, J.B., Waghmare, S.P., Zhou, K., Barendregt, A., Westphal, W., Heck, A.J.R., Boekema, E.J., Dickman, M.J. and Doudna. J.A. (2011) RNA-Guided Complex from a Bacterial Immune System Enhances Target Recognition through Seed Sequence Interactions. Proceedings of the National Academy of Sciences of the United States of America, 108, 10092-10097.
https://doi.org/10.1073/pnas.1102716108
|
[103]
|
Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F. and Jaenisch, R. (2013) One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell, 153, 910-918.
https://doi.org/10.1016/j.cell.2013.04.025
|
[104]
|
Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelson, T., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G. and Zhang, F. (2014) Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 343, 84-87.
https://doi.org/10.1126/science.1247005
|
[105]
|
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice. Nucleic Acids Research, 41, e188.
https://doi.org/10.1093/nar/gkt780
|
[106]
|
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J., Qiu, J. and Gao, C. (2013) Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. Nature Biotechnology, 31, 686-688.
https://doi.org/10.1038/nbt.2650
|
[107]
|
Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang. Y. and Zhang, F. (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell, 154, 1380-1389. https://doi.org/10.1016/j.cell.2013.08.021
|
[108]
|
Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., Lim ,W.A., Weissman, J.S. and Qi, L.S. (2013) CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 154, 442-451.
https://doi.org/10.1016/j.cell.2013.06.044
|
[109]
|
Kumlehn, J., Pietralla, J., Hensel, G., Pacher, M. and Puchta, H. (2018) The CRISPR/Cas Revolution Continues: From Efficient Gene Editing for Crop Breeding to Plant Synthetic Biology. Journal of Integrative Plant Biology, 60, 1127-1153.
https://doi.org/10.1111/jipb.12734
|
[110]
|
Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., Ezura, H., Nishida, K., Ariizumi, T. and Kondo, A. (2017) Targeted Base Editing in Rice and Tomato Using a CRISPR-Cas9 Cytidine Deaminase Fusion. Nature Biotechnology, 35, 441-443.
https://doi.org/10.1038/nbt.3833
|
[111]
|
Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D. and Gao, C. (2017) Precise Base Editing in Rice, Wheat and Maize with a Cas9-Cytidine Deaminase Fusion. Nature Biotechnology, 35, 438-440.
https://doi.org/10.1038/nbt.3811
|
[112]
|
Endo, M., Mikami, M., Endo, A., Kaya, H., Itoh, T., Nishimasu, H., Nureki, O. and Toki, S. (2018) Genome Editing in Plants by Engineered CRISPR-Cas9 Recognizing NG PAM. Nature Plants, 5, 14-17. https://doi.org/10.1038/s41477-018-0321-8
|
[113]
|
Hua, K., Tao, X., Yuan, F., Wang, D. and Zhu, J.K. (2018) Precise A·T to G·C Base Editing in the Rice Genome. Molecular Plant, 11, 627-630.
https://doi.org/10.1016/j.molp.2018.02.007
|
[114]
|
Kang, B.C., Yun, J.Y., Kim, S.T., Shin, Y., Ryu, J., Choi, M., Woo, J.W. and Kim, J.S. (2018) Precision Genome Engineering through Adenine Base Editing in Plants. Nature Plants, 4, 427-431. https://doi.org/10.1038/s41477-018-0115-z
|
[115]
|
Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R. and Gao, C. (2018) Expanded Base Editing in Rice and Wheat Using a Cas9-Adenosine Deaminase Fusion. Genome Biology, 19, 59. https://doi.org/10.1186/s13059-018-1443-z
|
[116]
|
Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., Zong, M., Liu, F., Chen, Q. and Xu, Y. (2018) Engineering Herbicide-Resistant Watermelon Variety through CRISPR/Cas9-Mediated Base-Editing. Plant Cell Reports, 37, 1353-1356. https://doi.org/10.1007/s00299-018-2299-0
|
[117]
|
Yan, F., Kuang, Y., Ren, B., Wang, J., Zhang, D., Lin, H., Yang, B., Zhou, X. and Zhou, H. (2018) Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Molecular Plant, 11, 631-634.
https://doi.org/10.1016/j.molp.2018.02.008
|
[118]
|
Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J. and Gao, C. (2018) Efficient C-to-T Base Editing in Plants Using a Fusion of nCas9 and Human APOBEC3A. Nature Biotechnology, 36, 950-953. https://doi.org/10.1038/nbt.4261
|
[119]
|
Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., Velasco, R. and Kanchiswamy, C.N. (2016) DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Frontiers in Plant Science, 7, 1904. https://doi.org/10.3389/fpls.2016.01904
|
[120]
|
Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T. and Osakabe, Y. (2016) Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 6, 31481. https://doi.org/10.1038/srep31481
|
[121]
|
Kaur, N., Alok, A., Shivani, Kaur, N., Pandey, P., Awasthi, P. and Tiwari, S. (2018) CRISPR/Cas9-Mediated Efficient Editing in Phytoene Desaturase (Pds) Demonstrates Precise Manipulation in Banana cv. Rasthali Genome. Functional & Integrative Genomics, 18, 89-99. https://doi.org/10.1007/s10142-017-0577-5
|
[122]
|
Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogue, F. and Faure, J.D. (2017) Selective Gene Dosage by CRISPR-Cas9 Genome Editing in Hexaploid Camelina sativa. Plant Biotechnology Journal, 15, 729-739.
https://doi.org/10.1111/pbi.12671
|
[123]
|
Odipio, J., Alicai, T., Ingelbrecht, I., Nusinow, D.A., Bart, R. and Taylor, N.J. (2017) Efficient CRISPR/Cas9 Genome Editing of Phytoene Desaturase in Cassava. Frontiers in Plant Science, 8, 1780. https://doi.org/10.3389/fpls.2017.01780
|
[124]
|
Gomez, M.A., Lin, Z.D., Moll, T., Chauhan, R.D., Hayden, L., Renninger, K., Beyene, G., Taylor, N.J., Carrington, J.C., Staskawicz, B.J. and Bart, R.S. (2019) Simultaneous CRISPR/Cas9-Mediated Editing of Cassava eIF4E Isoforms nCBP-1 and nCBP-2 Reduces Cassava Brown Streak Disease Symptom Severity and Incidence. Plant Biotechnology Journal, 17, 421-434. https://doi.org/10.1111/pbi.12987
|
[125]
|
Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L. and Zou, X. (2017) Engineering Canker-Resistant Plants through CRISPR/Cas9-Targeted Editing of the Susceptibility Gene CsLOB1 Promoter in Citrus. Plant Biotechnology Journal, 15, 1509-1519. https://doi.org/10.1111/pbi.12733
|
[126]
|
Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T. and Gal-On, A. (2016) Development of Broad Virus Resistance in Non-Transgenic Cucumber Using CRISPR/Cas9 Technology. Molecular Plant Pathology, 17, 1140-1153. https://doi.org/10.1111/mpp.12375
|
[127]
|
Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S. and Liang, Z. (2016) CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports, 6, 32289. https://doi.org/10.1038/srep32289
|
[128]
|
Okuzaki, A., Ogawa, T., Koizuka, C., Kaneko, K., Inaba, M., Imamura, J. and Koizuka, N. (2018) CRISPR/Cas9-Mediated Genome Editing of the Fatty Acid Desaturase 2 Gene in Brassica napus. Plant Physiology and Biochemistry, 131, 63-69.
https://doi.org/10.1016/j.plaphy.2018.04.025
|
[129]
|
Sauer, N.J., Narvaez-Vasquez, J., Mozoruk, J., Miller, R.B., Warburg, Z.J., Woodward, M.J., Mihiret, Y.A., Lincoln, T.A., Segami, R.E., Sanders, S.L., Walker, K.A., Beetham, P.R., Schöpke, C.R. and Gocal, G.F. (2016) Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants. Plant Physiology, 170, 1917-1928.
https://doi.org/10.1104/pp.15.01696
|
[130]
|
Andersson, M., Turesson, H., Nicolia, A., Fält, A.S., Samuelsson, M. and Hofvander, P. (2017) Efficient Targeted Multiallelic Mutagenesis in Tetraploid Potato (Solanum tuberosum) by Transient CRISPR-Cas9 Expression in Protoplasts. Plant Cell Reports, 36, 117-128. https://doi.org/10.1007/s00299-016-2062-3
|
[131]
|
Zhou, X., Zha, M., Huang, J., Li, L., Imran, M. and Zhang, C. (2017) StMYB44 Negatively Regulates Phosphate Transport by Suppressing Expression of PHOSPHATE1 in Potato. Journal of Experimental Botany, 68, 1265-1281.
https://doi.org/10.1093/jxb/erx026
|
[132]
|
Ye, M., Peng, Z., Tang, D., Yang, Z., Li, D., Xu, Y., Zhang, C. and Huang, S. (2018) Generation of Self-Compatible Diploid Potato by Knockout of S-RNase. Nature Plants, 4, 651-654. https://doi.org/10.1038/s41477-018-0218-6
|
[133]
|
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. and Zhao, K. (2016) Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE, 11, 0154027.
https://doi.org/10.1371/journal.pone.0154027
|
[134]
|
Cordones, M.N., Mohamed, S., Tanoi, K., Natsuko Kobayashi, N.I., Takagi, K., Vernet, A., Guiderdoni, E., Périn, C., Sentenac, H. and Véry, A.A. (2017) Production of Low-Cs+ Rice Plants by Inactivation of the K+ Transporter OsHAK1 with the CRISPR-Cas System. Plant Journal, 92, 43-56. https://doi.org/10.1111/tpj.13632
|
[135]
|
Yang, X., Chen, L., He, J. and Yu, W. (2017) Knocking out of Carotenoid Catabolic Genes in Rice Fails to Boost Carotenoid Accumulation, But Reveals a Mutation in Strigolactone Biosynthesis. Plant Cell Reports, 36, 1533-1545.
https://doi.org/10.1007/s00299-017-2172-6
|
[136]
|
Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P. and Xia, Q. (2015) CRISPR/Cas9-Mediated Targeted Mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87, 99-110. https://doi.org/10.1007/s11103-014-0263-0
|
[137]
|
Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J. and Shen, J. (2017) Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants. Journal of Agricultural and Food Chemistry, 65, 8674-8682.
https://doi.org/10.1021/acs.jafc.7b02745
|
[138]
|
Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L. and Gao, C. (2016) Efficient and Transgene-Free Genome Editing in Wheat through Transient Expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7, Article No. 12617. https://doi.org/10.1038/ncomms12617
|
[139]
|
Cui, X.C. (2017) Targeted Gene Editing Using CRISPR/Cas9 in a Wheat Protoplast System. University of Ottawa, Ottawa.
|
[140]
|
Kim, D., Alptekin, B. and Budak, H. (2018) CRISPR/Cas9 Genome Editing in Wheat. Functional & Integrative Genomics, 18, 31-41.
https://doi.org/10.1007/s10142-017-0572-x
|
[141]
|
Wang, W., Pan, Q., He, F., Akhunova, A., Chao, S., Trick, H. and Akhunov, E. (2018) Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. CRISPR Journal, 1, 65-74.
https://doi.org/10.1089/crispr.2017.0010
|
[142]
|
Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C. and Cigan, A.M. (2015) Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiology, 169, 931-945.
https://doi.org/10.1104/pp.15.00793
|
[143]
|
Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J. and Gao, C. (2016) Gene Replacements and Insertions in Rice by Intron Targeting Using CRISPR-Cas9. Nature Plants, 2, Article No. 16139. https://doi.org/10.1038/nplants.2016.139
|
[144]
|
Lee, K., Eggenberger, A.L., Banakar, R., McCaw, M.E., Zhu, H., Main, M., Kang, M., Gelvin, S.B. and Wang, K. (2019) CRISPR/Cas9-Mediated Targeted T-DNA Integration in Rice. Plant Molecular Biology, 99, 317-328.
https://doi.org/10.1007/s11103-018-00819-1
|
[145]
|
Li, Z., Liu, Z.B., Xing, A., Moon, B.P., Koellhofer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C. and Cigan, A.M. (2015) Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiology, 169, 960-970.
https://doi.org/10.1104/pp.15.00783
|
[146]
|
Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and Homologous Recombination-Mediated Genome Editing in Arabidopsis and Nicotiana benthamiana Using Guide RNA and Cas9. Nature Biotechnology, 31, 688-691. https://doi.org/10.1038/nbt.2654
|
[147]
|
Danilo, B., Perrot, L., Mara, K., Botton, E., Nogué, F. and Mazier, M. (2019) Efficient and Transgene-Free Gene Targeting Using Agrobacterium-Mediated Delivery of the CRISPR/Cas9 System in Tomato. Plant Cell Reports, 38, 459-462.
https://doi.org/10.1007/s00299-019-02373-6
|
[148]
|
Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sanchez-Leon, S., Baltes, N.J., Starker, C., Barro, F., Gao, C. and Voytas, D.F. (2017) High-Efficiency Gene Targeting in Hexaploid Wheat Using DNA Replicons and CRISPR/Cas9. Plant Journal, 89, 1251-1262. https://doi.org/10.1111/tpj.13446
|
[149]
|
Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J. and Li, J.F. (2017) A Potent Cas9-Derived Gene Activator for Plant and Mammalian Cells. Nature Plants, 3, 930.
https://doi.org/10.1038/s41477-017-0046-0
|
[150]
|
Lowder, L.G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T.F., Voytas, D.F., Zhang, Y. and Qi, Y. (2017) Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 11, 245-256.
https://doi.org/10.1016/j.molp.2017.11.010
|
[151]
|
Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M. and Mahfouz, M.M. (2015) RNA-Guided Transcriptional Regulation in Planta via Synthetic dCas9-Based Transcription Factors. Plant Biotechnology Journal, 13, 578-589.
https://doi.org/10.1111/pbi.12284
|
[152]
|
Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.F., Zhang, Y. and Qi, Y. (2015) A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiology, 169, 971-985. https://doi.org/10.1104/pp.15.00636
|
[153]
|
Vazquez-Vilar, M., Bernabé-Orts, J.M., Fernandez-Del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A. and Orzaez, D. (2016) A Modular Toolbox for gRNA-Cas9 Genome Engineering in Plants Based on the GoldenBraid Standard. Plant Methods, 12, 10. https://doi.org/10.1186/s13007-016-0101-2
|
[154]
|
Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A. and Zhang, F. (2015) In Vivo Genome Editing Using Staphylococcus aureus Cas9. Nature, 520, 186-191.
https://doi.org/10.1038/nature14299
|
[155]
|
Steinert, J., Schiml, S., Fauser, F. and Puchta, H. (2015) Highly Efficient Heritable Plant Genome Engineering Using Cas9 Orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant Journal, 84, 1295-1305.
https://doi.org/10.1111/tpj.13078
|
[156]
|
Kaya, H., Mikami, M., Endo, A., Endo, M. and Toki, S. (2016) Highly Specific Targeted Mutagenesis in Plants Using Staphylococcus aureus Cas9. Scientific Reports, 6, Article No. 26871. https://doi.org/10.1038/srep26871
|
[157]
|
Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M. and Siksnys, V. (2015) Rapid Characterization of CRISPR-Cas9 Protospacer Adjacent Motif Sequence Elements. Genome Biology, 16, 253.
https://doi.org/10.1186/s13059-015-0818-7
|
[158]
|
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V. and Zhang, F. (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163, 759-771. https://doi.org/10.1016/j.cell.2015.09.038
|
[159]
|
Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I. and Kneppers, J. (2016) Multiplex Gene Editing by CRISPR-Cpf1 Using a Single crRNA Array. Nature Biotechnology, 35, 31-34. https://doi.org/10.1038/nbt.3737
|
[160]
|
Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S. and Zhou, G. (2018) Establishing RNA Virus Resistance in Plants by Harnessing CRISPR Immune System. Plant Biotechnology Journal, 16, 1415-1423. https://doi.org/10.1111/pbi.12881
|
[161]
|
Zhang, T., Zhao, Y., Ye, J., Cao, X., Xu, C., Chen, B., An, H., Jiao, Y., Zhang, F., Yang, X. and Zhou, G. (2019) Establishing CRISPR/Cas13a Immune System Conferring RNA Virus Resistance in Both Dicot and Monocot Plants. Plant Biotechnology Journal, 17, 1185-1187. https://doi.org/10.1111/pbi.13095
|
[162]
|
Malzahn, A.A., Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., Deng, K., Zhang, T., Salcedo, V., Wang, K., Zhang, Y. and Qi, Y. (2019) Application of CRISPR-Cas12a Temperature Sensitivity for Improved Genome Editing in Rice, Maize, and Arabidopsis. BMC Biology, 17, 9.
https://doi.org/10.1186/s12915-019-0629-5
|
[163]
|
Endo, A., Masafumi, M., Kaya, H. and Toki, S. (2016) Efficient Targeted Mutagenesis of Rice and Tobacco Genomes Using Cpf1 from Francisella novicida. Scientific Reports, 6, 38169. https://doi.org/10.1038/srep38169
|
[164]
|
Lee, K., Zhang, Y., Kleinstiver, B.P., Guo, J.A., Aryee, M.J., Miller, J., Malzahn, A., Zarecor, S., Lawrence-Dill, C.J., Joung, J.K., Qi, Y. and Wang, K. (2019) Activities and Specificities of CRISPR/Cas9 and Cas12a Nucleases for Targeted Mutagenesis in Maize. Plant Biotechnology Journal, 17, 362-372.
https://doi.org/10.1111/pbi.12982
|
[165]
|
Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., Zhang, D., Malzahn, A., Gong, Z., Qi, Y., Zhang, T. and Zhang, Y. (2018) A Large-Scale Whole-Genome Sequencing Analysis Reveals Highly Specific Genome Editing by Both Cas9 and Cpf1 (Cas12a) Nucleases in Rice. Genome Biology, 19, 84. https://doi.org/10.1186/s13059-018-1458-5
|
[166]
|
Wang, M., Mao, Y., Lu, Y., Tao, X. and Zhu, J.K. (2017) Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. Molecular Plant, 10, 1011-1013.
https://doi.org/10.1016/j.molp.2017.03.001
|
[167]
|
Yin, X., Biswal, A.K., Dionora, J., Perdigon, K.M., Balahadia, C.P., Mazumdar, S., Chater, C., Lin, H.C., Coe, R.A., Kretzschmar, T., Gray, J.E., Quick, P.W. and Bandyopadhyay, A. (2017) CRISPR-Cas9 and CRISPR-Cpf1 Mediated Targeting of a Stomatal Developmental Gene EPFL9 in Rice. Plant Cell Reports, 36, 745-757.
https://doi.org/10.1007/s00299-017-2118-z
|
[168]
|
Liu, X.S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., Shu, J., Dadon, D., Young, R.A. and Jaenisch, R. (2016) Editing DNA Methylation in the Mammalian Genome. Cell, 167, 233-247. https://doi.org/10.1016/j.cell.2016.08.056
|
[169]
|
Lei, Y., Zhang, X., Su, J., Jeong, M., Gundry, M.C., Huang, Y.H., Zhou, Y., Li, W. and Goodell, M.A. (2017) Targeted DNA Methylation in Vivo Using an Engineered dCas9-MQ1 Fusion Protein. Nature Communications, 8, Article No. 16026.
https://doi.org/10.1038/ncomms16026
|
[170]
|
Hahn, F. and Nekrasov, V. (2019) CRISPR/Cas Precision: Do We Need to Worry about off-Targeting in Plants? Plant Cell Reports, 38, 437-441.
https://doi.org/10.1007/s00299-018-2355-9
|