[1]
|
Watson, J.D. and. Crick F.H.C. (1953) Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 171, 737-738. https://doi.org/10.1038/171737a0
|
[2]
|
Service, R.F. (2006) The Race for the $1000 Genome. Science, 311, 1544-1546. https://doi.org/10.1126/science.311.5767.1544
|
[3]
|
Fanget, A. (2013) Towards Tunneling Electrodes for Nanopore-Based DNA Sequencing. Thèse No 5700. Ecole Polytechnique Fèdèrale de Lausanne, Suisse.
|
[4]
|
Raza, S. and Ameen, A. (2017) Nano Pore Sequencing Technology: A Review. International Journal of Advances in Scientific Research, 3, 90-95. https://doi.org/10.7439/ijasr.v3i8.4333
|
[5]
|
Pillai, S., Gopalan, V. and Lam, A.K.-Y. (2017) Review of Sequencing Platforms and Their Applications in Phaeochromocytoma and Paragangliomas. Critical Reviews in Oncology/Hematology, 116, 58-67.
|
[6]
|
Ansorge, W.J. (2016) Next Generation DNA Sequencing (II): Techniques, Applications. Journal of Next Generation Sequencing and Applications, No. S1, 5.
|
[7]
|
Sanger, F. and Coulson, A.R. (1975) A Rapid Method for Determining Sequences in DNA by Primed Synthesis with DNA Polymerase. Journal of Molecular Biology, 94, 441-446. https://doi.org/10.1016/0022-2836(75)90213-2
|
[8]
|
Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA Sequencing with Chain-Terminating Inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
|
[9]
|
Maxam, A.M. and Gilbert, W. (1977) A New Method for Sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America, 74, 560-564. https://doi.org/10.1073/pnas.74.2.560
|
[10]
|
Anderson, S. (1981) Article Navigation Shotgun DNA Sequencing Using Cloned DNase I-Generated Fragments. Nucleic Acids Research, 9, 3015-3027. https://doi.org/10.1093/nar/9.13.3015
|
[11]
|
Canard, B. and Sarfati, R.S. (1994) DNA Polymerase Fluorescent Substrates with Reversible 3’-Tags. Gene, 148, 1-6. https://doi.org/10.1016/0378-1119(94)90226-7
|
[12]
|
Nyren, P., Petersson, B. and Uhlen, M. (1993) Solid Phase DNA Minisequencing by an Enzymatic Luminometric Inorganic Pyrophosphate Detection Assay. Analytical Biochemistry, 208, 171-175.
|
[13]
|
Hultman, S., Stahl, S., Homes, E. and Uhlén, M. (1989) Direct Solid Phase Sequencing of Genomic and Plasmid DNA Using Magnetic Beads as Solid Support. Nucleic Acids Research, 17, 4937-4946. https://doi.org/10.1093/nar/17.13.4937
|
[14]
|
Loman, N.J., Quick, J. and Simpson, J.T. (2015) A Complete Bacterial Genome Assembled de Novo Using Only Nanopore Sequencing Data. Nature Methods, 12, 733-735. https://doi.org/10.1038/nmeth.3444
|
[15]
|
Lin, X., Ivanov, A.P. and Edel, J.B. (2017) Selective Single Molecule Nanopore Sensing of Proteins Using DNA Aptamer-Functionalised Gold Nanoparticles. Chem. Sci., 8, 3905-3912. https://doi.org/10.1039/C7SC00415J
|
[16]
|
Wloka, C., Van Meervelt, V., Van Gelder, D., Danda, N., Jager, N., Williams, C.P. and Maglia, G. (2017) Label-Free and Real-Time Detection of Protein Ubiquitination with a Biological Nanopore. ACS Nano, 11, 4387-4394. https://doi.org/10.1021/acsnano.6b07760
|
[17]
|
Kennedy, E., Dong, Z., Tennant, C. and Timp, G. (2016) Reading the Primary Structure of a Protein with 0.07 nm3 Resolution Using a Subnanometre-Diameter Pore. Nature Nanotechnology, 11, 968-976. https://doi.org/10.1038/nnano.2016.120
|
[18]
|
Plesa, C., Ruitenberg, J.W., Witteveen, M.J. and Dekker, C. (2015) Detection of Individual Proteins Bound along DNA Using Solid-State Nanopores. Nano Letters, 15, 3153-3158. https://doi.org/10.1021/acs.nanolett.5b00249
|
[19]
|
Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S. and Bayley, H. (2009) Continuous Base Identification for Single-Molecule Nanopore DNA Sequencing. Nature Nanotechnology, 4, 265-270. https://doi.org/10.1038/nnano.2009.12
|
[20]
|
Farimani, A.B., Heiranian, M., Min, K. and Aluru, N.R. (2017) Antibody Subclass Detection Using Graphene Nanopores. The Journal of Physical Chemistry Letters, 8, 1670-1676. https://doi.org/10.1021/acs.jpclett.7b00385
|
[21]
|
Wang, S., Haque, F., Rychahou, P.G., Evers, B.M. and Guo, P. (2013) Engineered Nanopore of Phi29 DNA-Packaging Motor for Real-Time Detection of Single Colon Cancer Specific Antibody in Serum. ACS Nano, 7, 9814-9822. https://doi.org/10.1021/nn404435v
|
[22]
|
Shi, J., Hou, J. and Fang, Y. (2016) Recent Advances in Nanopore-Based Nucleic Acid Analysis and Sequencing. Microchimica Acta, 183, 925-939. https://doi.org/10.1007/s00604-015-1503-y
|
[23]
|
Ying, Y.-L., Zhang, J., Gao, R. and Long, Y.-T. (2013) Nanopore-Based Sequencing and Detection of Nucleic Acids. Angewandte Chemie International Edition, 52, 13154-13161. https://doi.org/10.1002/anie.201303529
|
[24]
|
Rincon-Restrepo, M., Mikhailova, E., Bayley, H. and Maglia, G. (2011) Controlled Translocation of Individual DNA Molecules through Protein Nanopores with Engineered Molecular Brakes. Nano Letters, 11, 746-750. https://doi.org/10.1021/nl1038874
|
[25]
|
Howorka, S., Cheley, S. and Bayley, H. (2001) Sequence-Specific Detection of Individual DNA Strands Using Engineered Nanopores. Nature Biotechnology, 19, 636-639. https://doi.org/10.1038/90236
|
[26]
|
Zahid, O.K., Wang, F., Ruzicka, J.A., Taylor, E.W. and Hall, A.R. (2016) Sequence-Specific Recognition of MicroRNAs and Other Short Nucleic Acids with Solid-State Nanopores. Nano Letters, 16, 2033-2039. https://doi.org/10.1021/acs.nanolett.6b00001
|
[27]
|
Clamer, M., Höfler, L., Mikhailova, E., Viero, G. and Bayley, H. (2014) Detection of 3’-End RNA Uridylation with a Protein Nanopore. ACS Nano, 8, 1364-1374. https://doi.org/10.1021/nn4050479
|
[28]
|
Bulushev, R.D., Marion, S. and Radenovic, A. (2015) Relevance of the Drag Force during Controlled Translocation of a DNA-Protein Complex through a Glass Nanocapillary. Nano Letters, 15, 7118-7125. https://doi.org/10.1021/acs.nanolett.5b03264
|
[29]
|
He, H., Xu, X., Wang, P., Chen, L. and Jin, Y. (2015) The Facile Surface Chemical Modification of a Single Glass Nanopore and Its Use in the Nonenzymatic Detection of Uric Acid. Chemical Communications, 51, 1914-1917. https://doi.org/10.1039/C4CC09185J
|
[30]
|
Yin, B., Xie, W., Liang, L., Deng, Y., He, S., He, F., Zhou, D., Tlili, C. and Wang, D. (2017) Covalent Modification of Silicon Nitride Nanopore by Amphoteric Polylysine for Short DNA Detection. ACS Omega, 2, 7127-7135. https://doi.org/10.1021/acsomega.7b01245
|
[31]
|
Shekar, S., Niedzwiecki, D.J., Chien, C.C., Ong, P., Fleischer, D.A., Lin, J., Rosenstein, J.K., Drndic, M. and Shepard, K.L. (2016) Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution. Nano Letters, 16, 4483-4489. https://doi.org/10.1021/acs.nanolett.6b01661
|
[32]
|
Liang, Z., Tang, Z., Li, J., Hu, R., Yu, D. and Zhao, Q. (2015) Interaction Prolonged DNA Translocation through Solid-State Nanopores. Nanoscale, 7, 10752-10759. https://doi.org/10.1039/C5NR01954K
|
[33]
|
Montagne, F., Blondiaux, N., Bojko, A. and Pugin, R. (2012) Molecular Transport through Nanoporous Silicon Nitride Membranes Produced from Self-Assembling Block Copolymers. Nanoscale, 4, 5880-5886. https://doi.org/10.1039/c2nr31498c
|
[34]
|
Venkatesan, B.M., Shah, A.B., Zuo, J.-M. and Bashir, R. (2010) DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Advanced Functional Materials, 20, 1266-1275. https://doi.org/10.1002/adfm.200902128
|
[35]
|
Zwolak, M. and Di Ventra, M. (2005) Electronic Signature of DNA Nucleotides via Transverse Transport. Nano Letters, 5, 421-424. https://doi.org/10.1021/nl048289w
|
[36]
|
Yin, K., Huang, S., Chen, X., Wang, X., Kong, J., Chen, Y. and Xue, J. (2018) Generating Sub-Nanometer Pores in Single-Layer MoS2 by Heavy-Ion Bombardment for Gas Separation: A Theoretical Perspective. ACS Applied Materials & Interfaces, 10, 28909-28917. https://doi.org/10.1021/acsami.8b10569
|
[37]
|
Luan, B. and Zhou, R. (2018) Single-File Protein Translocations through Graphene—MoS2 Heterostructure Nanopores. The Journal of Physical Chemistry Letters, 9, 3409-3415. https://doi.org/10.1021/acs.jpclett.8b01340
|
[38]
|
Luan, B. and Zhou, R. (2018) Spontaneous Transport of Single-Stranded DNA through Graphene—MoS2 Heterostructure Nanopores. ACS Nano, 12, 3886-3891. https://doi.org/10.1021/acsnano.8b01297
|
[39]
|
Smolyanitsky, A., Yakobson, B.I., Wassenaar, T.A., Paulechka, E. and Kroenlein, K. (2016) A MoS2-Based Capacitive Displacement Sensor for DNA Sequencing. ACS Nano, 10, 9009-9016. https://doi.org/10.1021/acsnano.6b05274
|
[40]
|
Farimani, A.B., Min, K. and Aluru, N.R. (2014) DNA Base Detection Using a Single-Layer MoS2. ACS Nano, 8, 7914-7922. https://doi.org/10.1021/nn5029295
|
[41]
|
De Souza, F.A.L., Amorim, R.G., Scopel, W.L. and Scheicher, R.H. (2017) Electrical Detection of Nucleotides via Nanopores in a Hybrid Graphene/h-BN Sheet. Nanoscale, 9, 2207-2212. https://doi.org/10.1039/C6NR07154F
|
[42]
|
Gu, Z., Zhang, Y., Luan, B. and Zhou, R. (2016) DNA Translocation through Single-Layer Boron Nitride Nanopores. Soft Matter, 12, 817-823. https://doi.org/10.1039/C5SM02197A
|
[43]
|
Zhang, L. and Wang, X. (2016) DNA Sequencing by Hexagonal Boron Nitride Nanopore: A Computational Study. Nanomaterials, 6, 111-121. https://doi.org/10.3390/nano6060111
|
[44]
|
Shukla, V., Jena, N.K., Grigoriev, A. and Ahuja, R. (2017) Prospects of Graphene–hBN Heterostructure Nanogap for DNA Sequencing. ACS Applied Materials & Interfaces, 9, 39945-39952. https://doi.org/10.1021/acsami.7b06827
|
[45]
|
Amorim, R.G., Rocha, A.R. and Scheicher, R.H. (2016) Boosting DNA Recognition Sensitivity of Graphene Nanogaps through Nitrogen Edge Functionalization. Journal of Physical Chemistry C, 120, 19384-19388. https://doi.org/10.1021/acs.jpcc.6b04683
|
[46]
|
Prasongkit, J., Grigoriev, A., Pathak, B., Ahuja, R. and Scheicher, R.H. (2013) Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap. Journal of Physical Chemistry C, 117, 15421-15428. https://doi.org/10.1021/jp4048743
|
[47]
|
Takeuchi, K. and Zolotoukhina, T. (2013) Individual DNA Base Identification at the Transport through Graphene Nanopore. ASME 11th International Conference on Nanochannels, Microchannels, and Minichannels, Sapporo, Japan, 16-19 June 2013, V001T10A003.
|
[48]
|
Traversi, F., Raillon, C., Benameur, S.M., et al. (2013) Detecting the Translocation of DNA through a Nanopore Using Graphene Nanoribbons. Nature Nanotechnology, 8, 939-945. https://doi.org/10.1038/nnano.2013.240
|
[49]
|
Saha, K.K., Drndić, M. and Nikolić, B.K. (2012) DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore. Nano Letters, 12, 50-55. https://doi.org/10.1021/nl202870y
|
[50]
|
Merchant, C.A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M.D., Venta, K., Luo, Z., Johnson, A.T.C. and Drndić, M. (2010) DNA Translocation through Graphene Nanopores. Nano Letters, 10, 2915-2921. https://doi.org/10.1021/nl101046t
|
[51]
|
Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M.K. and Dekker, C. (2010) DNA Translocation through Graphene Nanopores. Nano Letters, 10, 3163-3167. https://doi.org/10.1021/nl102069z
|
[52]
|
Nelson, T., Zhang, B. and Prezhdo, O.V. (2010) Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device. Nano Letters, 10, 3237-3242. https://doi.org/10.1021/nl9035934
|
[53]
|
Yang, N. and Jiang, X. (2017) Nanocarbons for DNA Sequencing: A Review. Carbon, 115, 293-311. https://doi.org/10.1016/j.carbon.2017.01.012
|
[54]
|
Liu, L., Xie, J., Li, T. and Wu, H.-C. (2015) Fabrication of Nanopores with Ultrashort Single-Walled Carbon Nanotubes Inserted in a Lipid Bilayer. Nature Protocols, 10, 1670-1678. https://doi.org/10.1038/nprot.2015.112
|
[55]
|
Zhang, S., Wang, X., Li, T., Liu, L., Wu, H.C., Luo, M. and Li, J. (2015) Sensitive Detection of a Modified Base in Single-Stranded DNA by a Single-Walled Carbon Nanotube. Langmuir, 31, 10094-10099. https://doi.org/10.1021/acs.langmuir.5b01272
|
[56]
|
Kim, H.S., Lee, S.J. and Kim, Y.-H. (2014) Distinct Mechanisms of DNA Sensing Based on N‐Doped Carbon Nanotubes with Enhanced Conductance and Chemical Selectivity. Small, 10, 774-781. https://doi.org/10.1002/smll.201301225
|
[57]
|
Liu, L., Yang, C., Zhao, K., Li, J. and Wu, H.C. (2013) Ultrashort Single-Walled Carbon Nanotubes in a Lipid Bilayer as a New Nanopore Sensor. Nature Communications, 4, Article No. 2989. https://doi.org/10.1038/ncomms3989
|
[58]
|
Göpfrich, K., Li, C.-Y., Mames, I., Bhamidimarri, S.P., Ricci, M., Yoo, J., Mames, A., Ohmann, A., Winterhalter, M., Stulz, E., Aksimentiev, A. and Keyser, U.F. (2016) Ion Channels Made from a Single Membrane-Spanning DNA Duplex. Nano Letters, 16, 4665-4669. https://doi.org/10.1021/acs.nanolett.6b02039
|
[59]
|
Di Ventra, M. and Taniguchi, M. (2016) Decoding DNA, RNA and Peptides with Quantum Tunneling. Nature Nanotechnology, 11, 117-126. https://doi.org/10.1038/nnano.2015.320
|
[60]
|
Gao, H.L., Wang, M., Wu, Z.Q., Wang, C., Wang, K. and Xia, X.H. (2015) Morpholino-Functionalized Nanochannel Array for Label-Free Single Nucleotide Polymorphisms Detection. Analytical Chemistry, 87, 3936-3941. https://doi.org/10.1021/ac504830e
|
[61]
|
Agah, S., Zheng, M., Pasquali, M. and Kolomeisky, A.B. (2016) DNA Sequencing by Nanopores: Advances and Challenges. Journal of Physics D: Applied Physics, 49, Article ID: 413001. https://doi.org/10.1088/0022-3727/49/41/413001
|
[62]
|
Laszlo, A., Derrington, I., Ross, B., Brinkerhoff, H., Adey, A., Nova, I., Craig, J., Langford, K., Samson, J.M., Daza, R., Doering, K., Shendure, J. and Gundlach, J. (2014) Decoding Long Nanopore Sequencing Reads of Natural DNA. Nature Biotechnology, 32, 829-833. https://doi.org/10.1038/nbt.2950
|
[63]
|
Venkatesan, B.M. and Bashir, R. (2011) Nanopore Sensors for Nucleic Acid Analysis. Nature Nanotechnology, 6, 615-624. https://doi.org/10.1038/nnano.2011.129
|
[64]
|
Panja, D., Barkema, G.T. and Kolomeisky, A.B. (2013) Through the Eye of the Needle: Recent Advances in Understanding Biopolymer Translocation. Journal of Physics: Condensed Matter, 25, Article ID: 413101. https://doi.org/10.1088/0953-8984/25/41/413101
|
[65]
|
Meller, A. (2003) Dynamics of Polynucleotide Transport through Nanometre-Scale Pores. Journal of Physics: Condensed Matter, 15, R581-R607.
|
[66]
|
Liu, Z., Wang, Y., Deng, T. and Chen, Q. (2016) Solid-State Nanopore-Based DNA Sequencing Technology. Journal of Nanomaterials, 2016, Article ID: 5284786. https://doi.org/10.1155/2016/5284786
|
[67]
|
Timp, W., Mirsaidov, U.M., Wang, D., Comer, J., Aksimentiev, A. and Timp, G. (2010) Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Transactions on Nanotechnology, 9, 281-294. https://doi.org/10.1109/TNANO.2010.2044418
|
[68]
|
Shi, W., Friedman, A.K. and Baker, L.A. (2017) Nanopore Sensing. Analytical Chemistry, 89, 157-188. https://doi.org/10.1021/acs.analchem.6b04260
|
[69]
|
Garrido-Cardenas, J., Garcia-Maroto, F., Alvarez-Bermejo, J. and Manzano-Agugliaro, F. (2017) DNA Sequencing Sensors: An Overview. Sensors, 17, 588-602. https://doi.org/10.3390/s17030588
|
[70]
|
Liu, L. and Wu, H.C. (2016) DNA-Based Nanopore Sensing. Angewandte Chemie International Edition, 55, 15216-15222. https://doi.org/10.1002/anie.201604405
|
[71]
|
Deamer, D., Akeson, M. and Branton, D. (2016) Three Decades of Nanopore Sequencing. Nature Biotechnology, 34, 518-524. https://doi.org/10.1038/nbt.3423
|
[72]
|
Goodwin, S., McPherson, J.D. and McCombie, W.R. (2016) Coming of Age: Ten Years of Next-Generation Sequencing Technologies. Nature Reviews Genetics, 17, 333-351. https://doi.org/10.1038/nrg.2016.49
|
[73]
|
Marx, V. (2015) Nanopores: A Sequencer in Your Backpack. Nature Methods, 12, 1015-1018. https://doi.org/10.1038/nmeth.3625
|
[74]
|
Shendure, J.A., Porreca, G.J., Church, G.M., Gardner, A.F., Hendrickson, C., Kieleczawa, J. and Slatko, B.E. (2011) Overview of DNA Sequencing Strategies. In: Current Protocols in Molecular Biology, Chapter 7, Unit 7.1., 1-23.
|
[75]
|
Linnarsson, S. (2010) Recent Advances in DNA Sequencing Methods—General Principles of Sample Preparation. Experimental Cell Research, 316, 1339-1343. https://doi.org/10.1016/j.yexcr.2010.02.036
|
[76]
|
Carson, S. and Wanunu, M. (2015) Challenges in DNA Motion Control and Sequence Readout Using Nanopore Devices. Nanotechnology, 26, Article ID: 074004.
|
[77]
|
Lee, K., Lee, H., Lee, S.-H., Kim, H.-M., Kim, K.-B. and Kim, S.J. (2017) Enhancing the Sensitivity of DNA Detection by Structurally Modified Solid-State Nanopore. Nanoscale, 9, 18012-18021. https://doi.org/10.1039/C7NR05840C
|
[78]
|
Gusakova, J., Wang, X., Shiau, L.L., Krivosheeva, A., Shaposhnikov, V., Borisenko, V., Gusakov, V. and Tay, B.K. (2017) Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study within DFT Framework (GVJ-2e Method). Physica Status Solidi (a), 214, Article ID: 1700218. https://doi.org/10.1002/pssa.201700218
|
[79]
|
Kneipp, K., Kneipp, H., Kartha, V.B., Manoharan, R., Deinum, G., Itzkan, I., Dasari, R.R. and Feld, M.S. (1998) Detection and Identification of a Single DNA Base Molecule Using Surface-Enhanced Raman Scattering (SERS). Physical Review E, 57, R6281(R). https://doi.org/10.1103/PhysRevE.57.R6281
|
[80]
|
Afsari, S., Korshoj, L.E., Abel Jr., G.R., Khan, S., Chatterjee, A. and Nagpal, P. (2017) Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification. ACS Nano, 11, 11169-11181. https://doi.org/10.1021/acsnano.7b05500
|
[81]
|
Soni, G.V. and Meller, A. (2007) Progress toward Ultrafast DNA Sequencing Using Solid-State Nanopores. Clinical Chemistry, 53, 1996-2001. https://doi.org/10.1373/clinchem.2007.091231
|
[82]
|
United States Food and Drug Administration (2016) Nucleic Acid Based Tests. http://www.fda.gov/MedicalDevices/ProductsandMedical Procedures/InVitroDiagnostics/ucm330711.htm
|
[83]
|
Chen, K., Juhasz, M., Gularek, F., Weinhold, E., Tian, Y., Keyser, U.F. and Bell, N.A.W. (2017) Ionic Current-Based Mapping of Short Sequence Motifs in Single DNA Molecules Using Solid-State Nanopores. Nano Letters, 17, 5199-5205. https://doi.org/10.1021/acs.nanolett.7b01009
|
[84]
|
Larkin, J., Henley, R., Bell, D.C., Cohen-Karni, T., Rosenstein, J.K. and Wanunu, M. (2013) Slow DNA Transport through Nanopores in Hafnium Oxide Membranes. ACS Nano, 7, 10121-10128. https://doi.org/10.1021/nn404326f
|
[85]
|
Moretti, M., Di Fabrizio, E., Cabrini, S.R., De Angelis, F. and Firrao, G. (2008) An ON/OFF Biosensor Based on Blockade of Ionic Current Passing through a Solid-State Nanopore. Biosensors and Bioelectronics, 24, 141-147. https://doi.org/10.1016/j.bios.2008.03.047
|
[86]
|
Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, A.J. and Waterston, R.H. (2017) DNA Sequencing at 40: Past, Present and Future. Nature, 550, 345-353. https://www.nature.com/articles/nature24286 https://doi.org/10.1038/nature24286
|
[87]
|
Butler, T.Z., Gundlach, J.H. and Troll, M. (2007) Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore. Biophysical Journal, 93, 3229-3240. https://doi.org/10.1529/biophysj.107.107003
|
[88]
|
He, J., Lin, L., Zhang, P. and Lindsay, S. (2007) Identification of DNA Basepairing via Tunnel-Current Decay. Nano Letters, 7, 3854-3858. https://doi.org/10.1021/nl0726205
|
[89]
|
Zwolak, M. and Di Ventra, M. (2008) Colloquium: Physical Approaches to DNA Sequencing and Detection. Reviews of Modern Physics, 80, 141-165. https://doi.org/10.1103/RevModPhys.80.141
|
[90]
|
Xu, M., Endres, R.G. and Arakawa, Y. (2007) The Electronic Properties of DNA Bases. Small, 3, 1539-1543. https://doi.org/10.1002/smll.200600732
|
[91]
|
Taniguchi, M. (2014) Single-Molecule Sequencing Technologies of Biomolecules via Electric Currents. 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Antonio, TX, 26-30 October 2014, 199-204.
|
[92]
|
Gracheva, M.E., Xiong, A.L., Aksimentiev, A., Schulten, K., Timp, G. and Leburton, J.-P. (2006) Simulation of the Electric Response of DNA Translocation through a Semiconductor Nanopore-Capacitor. Nanotechnology, 17, 622-633. https://doi.org/10.1088/0957-4484/17/3/002
|
[93]
|
Gracheva, M.E., Aksimentiev, A. and Leburton, J.-P. (2006) Electrical Signatures of Single-Stranded DNA with Single Base Mutations in a Nanopore Capacitor. Nanotechnology, 17, 3160-3165. https://doi.org/10.1088/0957-4484/17/13/014
|
[94]
|
Heng, J.B., Aksimentiev, A., Ho, C., Dimitrov, V., Sorsch, T., Miner, J., Mansfield, W., Schulten K. and Timp, G. (2005) Beyond the Gene Chip. Bell LabsTechnical Journal, 10, 5-22. https://doi.org/10.1002/bltj.20102
|
[95]
|
Milgrew, M.J. and Cumming, D.R.S. (2008) Matching the Transconductance Characteristics of CMOS ISFET Arrays by Removing Trapped Charge. IEEE Transactions on Electron Devices, 55, 1074-1079. https://doi.org/10.1109/TED.2008.916680
|
[96]
|
Maruyama, Y., Terao, S. and Sawada, K. (2009) Label Free CMOS DNA Image Sensor Based on the Charge Transfer Technique. Biosensors and Bioelectronics, 24, 3108-3112. https://doi.org/10.1016/j.bios.2009.03.031
|
[97]
|
Kasianowicz, J.J., Brandin, E., Branton, D. and Deamer, D.W. (1996) Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proceedings of the National Academy of Sciences of the United States of America, 93, 13770-13773. https://doi.org/10.1073/pnas.93.24.13770
|
[98]
|
Dekker, C. (2007) Solid-State Nanopores. Nature Nanotechnology, 2, 209-215. https://doi.org/10.1038/nnano.2007.27
|
[99]
|
Deamer, D.W. and Branton, D. (2002) Characterization of Nucleic Acids by Nanopore Analysis. Accounts of Chemical Research, 35, 817-825. https://doi.org/10.1021/ar000138m
|
[100]
|
Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M. and Schloss, J.A. (2008) The Potential and Challenges of Nanopore Sequencing. Nature Biotechnology, 26, 1146-1153. https://doi.org/10.1038/nbt.1495
|
[101]
|
Bayley, H. (2006) Sequencing Single Molecules of DNA. Current Opinion in Chemical Biology, 10, 628-637. https://doi.org/10.1016/j.cbpa.2006.10.040
|
[102]
|
Ashkenasy, N., Sanchez-Quesada, J., Bayley, H. and Ghadiri, M.R. (2005) Recognizing a Single Base in an Individual DNA Strand: A Step Toward DNA Sequencing in Nanopores. Angewandte Chemie International Edition, 44, 1401-1404. https://doi.org/10.1002/anie.200462114
|
[103]
|
Mitchell, N. and Howorka, S. (2008) Chemical Tags Facilitate the Sensing of Individual DNA Strands with Nanopores. Angewandte Chemie International Edition, 47, 5565-5568. https://doi.org/10.1002/anie.200800183
|
[104]
|
Xie, P., Xiong, Q., Fang, Y., Qing, Q. and Lieber, C.M. (2012) Local Electrical Potential Detection of DNA by Nanowire-Nanopore Sensors. Nature Nanotechnology, 7, 119-125. https://doi.org/10.1038/nnano.2011.217
|
[105]
|
Stefan, W.K., Alexander, Y.G., Yitzhak, R. and Cees, D. (2011) Modeling the Conductance and DNA Blockade of Solid-State Nanopores. Nanotechnology, 22, Article ID: 315101. https://doi.org/10.1088/0957-4484/22/31/315101
|
[106]
|
Lagerqvist, J., Zwolak, M., and Di Ventra, M. (2007) Influence of the Environment and Probes on Rapid DNA Sequencing via Transverse Electronic Transport. Biophysical Journal, 93, 2384-2390. https://doi.org/10.1529/biophysj.106.102269
|
[107]
|
Krstic, P.S., Wells, J.C., Fuentes-Cabrera, M., Xu, D. and Lee, J.W. (2007) Toward Electronic Conductance Characterization of DNA Nucleotide Bases. Solid State Phenomena, 121-123, 1387-1390. https://doi.org/10.4028/www.scientific.net/SSP.121-123.1387
|
[108]
|
Tsutsui, M., Taniguchi, M., Yokota, K. and Kawai, T. (2010) Identifying Single Nucleotides by Tunnelling Current. Nature Nanotechnology, 5, 286-290. https://doi.org/10.1038/nnano.2010.42
|
[109]
|
Chang, S., Huang, S., He, J., Liang, F., Zhang, P., Li, S., Chen, X., Sankey, O. and Lindsay, S. (2010) Electronic Signatures of all Four DNA Nucleosides in a Tunneling Gap. Nano Letters, 10, 1070-1075. https://doi.org/10.1021/nl1001185
|
[110]
|
Huang, S., He, J., Chang, S., Zhang, P., Liang, F., Li, S., Tuchband, M., Fuhrmann, A., Ros, R. and Lindsay, S. (2010) Identifying Single Bases in a DNA Oligomer with Electron Tunneling. Nature Nanotechnology, 5, 868-873. https://doi.org/10.1038/nnano.2010.213
|
[111]
|
Ohshiro, T., Tsutsui, M., Matsubara, K., Furuhashi, M., Taniguchi, M. and Kawai, T. (2012) Single-Molecule Tunnel-Current Based Identification of DNA/RNA Towards Sequencing by Using Nano-MCBJ. 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, 28 October-1 November 2012, 204-206.
|
[112]
|
Cheng, L. (2016) Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110) Surfaces. Materials, 9, 1016-1027. https://doi.org/10.3390/ma9121016
|
[113]
|
Kestell, J., Boscoboinik, J.A., Cheng, L., Garvey, M., Bennett, D.W. and Tysoe, W.T. (2015) Structural Changes in Self-Catalyzed Adsorption of Carbon Monoxide on 1,4-Phenylene Diisocyanide Modified Au(111). Journal of Physical Chemistry C, 119, 18317-18325. https://doi.org/10.1021/acs.jpcc.5b04783
|
[114]
|
Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M. and Corn, R.M. (2000) Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. Analytical Chemistry, 73, 1-7. https://doi.org/10.1021/ac0010431
|
[115]
|
Xu, W. (2008) Adsorption of Organic Molecules on Solid Surfaces. A Scanning Tunneling Microscopy Study. PhD Thesis, Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy University of Aarhus, Denmark.
|
[116]
|
Sowerby, S.J., Edelwirth, M. and Heckl, W.M. (1998) Self-Assembly at the Prebiotic Solid-Liquid Interface: Structures of Self-Assembled Monolayers of Adenine and Guanine Bases Formed on Inorganic Surfaces. The Journal of Physical Chemistry B, 102, 5914-5922. https://doi.org/10.1021/jp980684l
|
[117]
|
Schöning, M. and Poghossian, A. (2006) Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions. Electroanalysis, 18, 1893-1900. https://doi.org/10.1002/elan.200603609
|
[118]
|
Lee, C.-S., Kim, S.K. and Kim, M. (2009) Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors, 9, 7111-7131. https://doi.org/10.3390/s90907111
|
[119]
|
Pijanowska, D.G. and Torbicz, W. (2005) Biosensors for Bioanalytical Applications. Bulletin of the Polish Academy of Sciences: Technical Sciences, 53, 251-260.
|
[120]
|
Kimura, J., Ito, N., Kuriyama, T., Kikuchi, M., Arai, T., Negishi, N. and Tomita, Y. (1989) J. Electrochem. Soc., 136, 1744-1747.
|
[121]
|
Bergveld, P. (1970) Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Transactions on Biomedical Engineering, BME-17, 70-71. https://doi.org/10.1109/TBME.1970.4502688
|
[122]
|
Veigas, B., Fortunato, E. and Baptista, P.V. (2015) Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives. Sensors, 15, 10380-10398. https://doi.org/10.3390/s150510380
|
[123]
|
Hafeman, D.G., Parce, J.W. and McConnel, H.M. (1988) Light-Addressable Potentiometric Sensor for Biochemical Systems. Science, 240, 1182-1185. https://doi.org/10.1126/science.3375810
|
[124]
|
Gasparyan, F., Zadorozhny, I., Khondkaryan, H., Arakelyan, A. and Vitusevich, S. (2018) Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors. Nanoscale Research Letters, 13, 87-96. https://doi.org/10.1186/s11671-018-2494-5
|
[125]
|
Estrela, P., Stewart, A., Yan, F. and Migliorato, P. (2005) Field Effect Detection of Biomolecular Interactions. Electrochimica Acta, 50, 4995-5000. https://doi.org/10.1016/j.electacta.2005.02.075
|
[126]
|
Khan, M.I., Khan, A.M., Nouman, A., Azhar, M.I. and Saleem, M.K. (2012) pH Sensing Materials for MEMS Sensors and Detection Techniques. Int. Conf. on Solid-State and Integrated Circuit (ICSIC 2012) IPCSIT, Vol. 32, IACSIT Press, Singapore, 18-23. http://www.ipcsit.com/vol32/004-ICSIC2012-D0022.pdf
|
[127]
|
Bergveld, P. (2003) Thirty Years of ISFETOLOGY: What Happened in the Past 30 Years and What May Happen in the Next 30 Years. Sensors and Actuators B: Chemical, 88, 1-20. https://doi.org/10.1016/S0925-4005(02)00301-5
|
[128]
|
Caras, S. and Janata, J. (1980) Field Effect Transistor Sensitive to Penicillin. Analytical Chemistry, 52, 1935-1937. https://doi.org/10.1021/ac50062a035
|
[129]
|
Lee, C.H., Seo, H.I., Lee, Y.C., Cho, B.W., Jeong, H. and Dohn, B.K. (2000) All Solid Type ISFET Glucose Sensor with Fast Response and High Sensitivity Characteristics. Sensors and Actuators B: Chemical, 64, 37-41. https://doi.org/10.1016/S0925-4005(99)00480-3
|
[130]
|
Sekiguchi, T., Nakamura, M., Kato, M., Nishikawa, K., Hokari, K., Sugiyama, T. and Asaka, M. (2000) Immunological Helicobacter pylori Urease Analyzer Based on Ion-Sensitive Field Effect Transistor. Sensors and Actuators B: Chemical, 67, 265-269. https://doi.org/10.1016/S0925-4005(00)00522-0
|
[131]
|
Offenhäusser, A., Sprössler, C., Matsuzawa, M. and Knoll, W. (1997) Field-Effect Transistor Array for Monitoring Electrical Activity from Mammalian Neurons in Culture. Biosensors and Bioelectronics, 12, 819-826. https://doi.org/10.1016/S0956-5663(97)00047-X
|
[132]
|
Meyburg, S., Goryll, M., Moers, J., Ingebrandt, S., Böcker-Meffert, S., Lüth, H. and Offenhäusser, A. (2006) N-Channel Field-Effect Transistors with Floating Gates for Extracellular Recordings. Biosensors and Bioelectronics, 21, 1037-1044. https://doi.org/10.1016/j.bios.2005.03.010
|
[133]
|
Chang, J.C. and Kan, Y.W. (1979) Beta 0 Thalassemia, a Nonsense Mutation in Man. Proceedings of the National Academy of Sciences of the USA, 76, 2886-2889. https://doi.org/10.1073/pnas.76.6.2886
|
[134]
|
Schöning, M.J. and Poghossian, A. (2002) Recent Advances in Biologically Sensitive Field-Effect Transistors (BioFETs). Analyst, 127, 1137-1151. https://doi.org/10.1039/B204444G
|
[135]
|
Hu, Y. (2015) Advanced Sensing and Processing Methodologies for ISFET Based DNA Sequencing. A Report Submitted for the Degree of Doctor of Philosophy of Imperial College London, London.
|
[136]
|
Kaisti, M., Kerko, A., Aarikka, E., Saviranta, P., Boeva, Z., Soukka, T. and Lehmusvuori, A. (2017) Real-Time Wash-Free Detection of Unlabeled PNA-DNA Hybridization Using Discrete FET Sensor. Scientific Rpeorts, 7, Article No. 15734. https://doi.org/10.1038/s41598-017-16028-7
|
[137]
|
Purushothaman, S., Toumazou, C. and Ou, C.-P. (2006) Protons and Single Nucleotide Polymorphism Detection: A Simple Use for the Ion Sensitive Field Effect Transistor. Sensors and Actuators B: Chemical, 114, 964-968. https://doi.org/10.1016/j.snb.2005.06.069
|
[138]
|
Russel, W.B., Saville, D.A. and Schowalter, W.R. (1989) Colloidal Dispersions. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511608810
|
[139]
|
Fologea, D., Uplinger, J., Thomas, B., McNabb, D.S. and Li, J. (2005) Slowing DNA Translocation in a Solid-State Nanopore. Nano Letters, 5, 1734-1737. https://doi.org/10.1021/nl051063o
|
[140]
|
Peng, H.B. and Ling, X.S.S. (2009) Reverse DNA Translocation through a Solid-State Nanopore by Magnetic Tweezers. Nanotechnology, 20, Article ID: 185101. https://doi.org/10.1088/0957-4484/20/18/185101
|
[141]
|
He, Y., Tsutsui, M., Fan, C., Taniguchi, M. and Kawai, T. (2011) Controlling DNA Translocation through Gate Modulation of Nanopore Wall Surface Charges. ACS Nano, 5, 5509-5518. https://doi.org/10.1021/nn201883b
|
[142]
|
Akenson, M., Branton, D., Kasianowicz, J.J., Brandin, E. and Deamer, D.W. (1999) Microsecond Time-Scale Discrimination Among Polycytidylic Acid, Polyadenylic Acid, and Polyuridylic Acid as Homopolymers or as Segments Within Single RNA Molecules. Biophysical Journal, 77, 3227-3233. https://doi.org/10.1016/S0006-3495(99)77153-5
|
[143]
|
Maitra, R.D., Kim, J. and Dunbar, W.B. (2012) Recent Advances in Nanopore Sequencing. Electrophoresis, 33, 3418-3428. https://doi.org/10.1002/elps.201200272
|
[144]
|
Pyykkö, P. and Atsumi, M. (2009) Molecular Double-Bond Covalent Radii for Elements Li-E112. Chemistry: A European Journal, 15, 12770-12779. https://doi.org/10.1002/chem.200901472
|
[145]
|
Han, M.Y. (2010) Electronic Transport in Graphene Nanoribbons. Columbia University Press, New York.
|
[146]
|
Gasparyan, L., Mazo, I., Simonyan, V. and Gasparyan, F. (2019) Modified DNA Sequencing Method through Effective Regulation of the DNA Translocation Speed in Aqueous Solution. Proceedings of International Conference on Advances in Functional Materials, The George Washington University, Washington DC, 22-24 July 2019, in Press.
|