[1]
|
Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985) C60: Buckminsterfullerene. Nature, 318, 162-163. https://doi.org/10.1038/318162a0
|
[2]
|
Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
|
[3]
|
Sharon, M. and Sharon, M. (2015) Graphene: An Introduction to the Fundamentals and Industrial Applications. John Wiley & Sons, Inc., Hoboken.
|
[4]
|
Novoselov, K.S., et al. (2004) Electric Field in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
|
[5]
|
Das, S., Sudhagar, P., Kang, Y.S. and Choi, W. (2015) Synthesis and Characterization of Graphene. In: Lu, W., Baek, J. and Dai, L., Eds., Carbon Nanomaterials for Advanced Energy Systems, John Wiley & Sons, Inc., Hoboken, NJ, 85-131.
https://doi.org/10.1002/9781118980989.ch3
|
[6]
|
Choi, W. and Lee, J. (2012) Graphene: Synthesis and Applications. CRC Press, Boca Raton.
|
[7]
|
Zhu, Y., et al. (2010) Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22, 3906-3924.
|
[8]
|
Bolotin, K.I., et al. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146, 351-355. https://doi.org/10.1016/j.ssc.2008.02.024
|
[9]
|
Morozov, S.V., et al. (2008) Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 100, Article ID: 016602.
|
[10]
|
Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
https://doi.org/10.1126/science.1157996
|
[11]
|
Balandin, A.A., et al. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8, 902-907. https://doi.org/10.1021/nl0731872
|
[12]
|
Moser, J., Barreiro, A. and Bachtold, A. (2007) Current-Induced Cleaning of Graphene. Applied Physics Letters, 91, Article ID: 163513.
https://doi.org/10.1063/1.2789673
|
[13]
|
Kozlov, S.M., Vines, F. and Gorling, A. (2011) Bandgap Engineering of Graphene by Physisorbed Adsorbates. Advanced Materials, 23, 2638-2643.
https://doi.org/10.1002/adma.201100171
|
[14]
|
Bunch, J.S., et al. (2008) Impermeable Atomic Membranes from Graphene Sheets. Nano Letters, 8, 2458-2462.
|
[15]
|
Xiong, R., et al. (2016) Ultrarobust Transparent Cellulose Nanocrystal-Graphene Membranes with High Electrical Conductivity. Advanced Materials, 28, 1501-1509.
https://doi.org/10.1002/adma.201504438
|
[16]
|
Eda, G., Fanchini, G. and Chhowalla, M. (2008) Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nature Nanotechnology, 3, 270-274. https://doi.org/10.1038/nnano.2008.83
|
[17]
|
Gilje, S., Han, S., Wang, M., Wang, K.L. and Kaner, R.B. (2007) A Chemical Route to Graphene for Device Applications. Nano Letters, 7, 3394-3398.
|
[18]
|
Li, X., Wang, X., Zhang, L., Lee, S. and Dai, H. (2008) Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 319, 1229-1232.
https://doi.org/10.1126/science.1150878
|
[19]
|
Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T. and Honma, I. (2008) Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Letters, 8, 2277-2282. https://doi.org/10.1021/nl800957b
|
[20]
|
Tung, T.T., et al. (2016) Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Interfaces, 8, 16521-16532.
https://doi.org/10.1021/acsami.6b04872
|
[21]
|
Cai, W., Zhu, Y., Li, X., Piner, R.D. and Ruoff, R.S. (2009) Large Area Few-Layer Graphene/Graphite Films as Transparent Thin Conducting Electrodes. Applied Physics Letters, 95, 123115. https://doi.org/10.1063/1.3220807
|
[22]
|
Li, X., et al. (2009) Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 9, 4359-4363.
|
[23]
|
Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S. (2008) Graphene-Based Ultracapacitors. Nano Letters, 8, 3498-3502.
|
[24]
|
Sharma, V., Jain, Y., Kumari, M., Gupta, R., Sharma, S.K. and Sachdev, K. (2017) Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromolecular Symposia, 376, 1-5.
https://doi.org/10.1002/masy.201700006
|
[25]
|
Liu, Z., Robinson, J.T., Sun, X. and Dai, H. (2008) PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. Journal of Amercain Chemical Society, 130, 10876-10877. https://doi.org/10.1021/ja803688x
|
[26]
|
Das, S. and Drucker, J. (2017) Nucleation and Growth of Single Layer Graphene on Electrodeposited Cu by Cold Wall Chemical Vapor Deposition. Nanotechnology, 28, Article ID: 105601.
|
[27]
|
Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L. and Yu, G. (2009) Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9, 1752-1758. https://doi.org/10.1021/nl803279t
|
[28]
|
Seyller, T., et al. (2008) Epitaxial Graphene: A New Material. Physica Status Solidi, 245, 1436-1446.
|
[29]
|
Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A. and Tascon, J.M.D. (2009) Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir, 25, 5957-5968.
https://doi.org/10.1021/la804216z
|
[30]
|
Park, S. and Ruoff, R.S. (2009) Chemical Methods for the Production of Graphenes. Nature Nanotechnology, 4, 217-224.
|
[31]
|
Allen, M.J., Tung, V.C. and Kaner, R.B. (2010) Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 110, 132-145.
|
[32]
|
Viculis, L.M., Mack, J.J. and Kaner, R.B. (2003) A Chemical Route to Carbon Nanoscrolls. Science, 299, 1361. https://doi.org/10.1126/science.1078842
|
[33]
|
Rollings, E., et al. (2006) Synthesis and Characterization of Atomically Thin Graphite Films on a Silicon Carbide Substrate. Journal of Physics and Chemistry of Solids, 67, 2172-2177. https://doi.org/10.1016/j.jpcs.2006.05.010
|
[34]
|
Reina, A., et al. (2009) Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9, 30-35.
https://doi.org/10.1021/nl801827v
|
[35]
|
Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C. and Chen, J. (2008) One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials, 18, 1518-1525. https://doi.org/10.1002/adfm.200700797
|
[36]
|
Xin, G., Hwang, W., Kim, N., Cho, S.M. and Chae, H. (2010) A Graphene Sheet Exfoliated with Microwave Irradiation and Interlinked by Carbon Nanotubes for High-Performance Transparent Flexible Electrodes. Nanotechnology, 21, Article ID: 405201. https://doi.org/10.1088/0957-4484/21/40/405201
|
[37]
|
Jiao, L., Wang, X., Diankov, G., Wang, H. and Dai, H. (2010) Facile Synthesis of High-Quality Graphene Nanoribbons. Nature Nanotechnology, 5, 321-325.
https://doi.org/10.1038/nnano.2010.54
|
[38]
|
Kosynkin, D.V., et al. (2009) Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature, 458, 872-876.
https://doi.org/10.1038/nature07872
|
[39]
|
Jiao, L., Zhang, L., Wang, X., Diankov, G. and Dai, H. (2009) Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature, 458, 877-880.
https://doi.org/10.1038/nature07919
|
[40]
|
Ebbesen, T.W. and Hiura, H. (1995) Graphene in 3-Dimensions: Towards Graphite origami. Advanced Materials, 7, 582-586.
https://doi.org/10.1002/adma.19950070618
|
[41]
|
Lu, X., Yu, M., Huang, H. and Ruoff, R.S. (1999) Tailoring Graphite with the Goal of Achieving Single Sheets. Nanotechnology, 10, 269-272.
https://doi.org/10.1088/0957-4484/10/3/308
|
[42]
|
Lang, B. (1975) A LEED Study of the Deposition of Carbon on Platinum Crystal Surfaces. Surface Science, 53, 317-329.
https://doi.org/10.1016/0039-6028(75)90132-6
|
[43]
|
Liang, X., et al. (2009) Electrostatic Force Assisted Exfoliation of Prepatterned Few-Layer Graphenes into Device Sites. Nano Letters, 9, 467-472.
https://doi.org/10.1021/nl803512z
|
[44]
|
Ci, L., et al. (2009) Graphene Shape Control by Multistage Cutting and Transfer, Advanced Materials, 21, 4487-4491. https://doi.org/10.1002/adma.200900942
|
[45]
|
Rao, C.N.R. and Sood, A.K. (2013) Graphene: Synthesis, Properties, and Phenomena. John Wiley & Sons, Inc., Weinheim, Germany.
|
[46]
|
Viculis, L.M., Mack, J.J., Mayer, O.M., Hahn, H.T. and Kaner, R.B. (2005) Intercalation and Exfoliation Routes to Graphite Nanoplatelets. Journal of Materials Chemitry, 15, 974-978. https://doi.org/10.1039/b413029d
|
[47]
|
Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., Bipasha, F.A. and Hossain, S.S. (2016) Synthesis of Graphene. International Nano Letters, 6, 65-83.
https://doi.org/10.1007/s40089-015-0176-1
|
[48]
|
Valles, C., et al. (2008) Solutions of Negatively Charged Graphene Sheets and Ribbons. Journal of the American Chemical Society, 130, 15802-15804.
https://doi.org/10.1021/ja808001a
|
[49]
|
Kamali, A.R. and Fray, D.J. (2013) Molten Salt Corrosion of Graphite as a Possible Way to Make Carbon Nanostructures. Carbon, 56, 121-131.
https://doi.org/10.1016/j.carbon.2012.12.076
|
[50]
|
Pu, N.-W., Wang, C.-A., Sung, Y., Liu, Y.-M. and Ger, M.-D. (2009) Production of Few-Layer Graphene by Supercritical CO2 Exfoliation of Graphite. Materials Letters, 63, 1987-1989. https://doi.org/10.1016/j.matlet.2009.06.031
|
[51]
|
Safavi, A., Tohidi, M., Mahyari, F.A. and Shahbaazi, H. (2012) One-Pot Synthesis of Large Scale Graphene Nanosheets from Graphite-Liquid Crystal Composite via Thermal Treatment. Journal of Materials Chemistry, 22, 3825-3831.
https://doi.org/10.1039/c2jm13929d
|
[52]
|
Dhakate, S.R., et al. (2011) An Approach to Produce Single and Double Layer Graphene from Re-Exfoliation of Expanded Graphite. Carbon, 49, 1946-1954.
https://doi.org/10.1016/j.carbon.2010.12.068
|
[53]
|
Staudenmaier, L. (1898) Verfahren zur Darstellung der Graphitsaure. Berichte der Deutschen Chemischen Gesellschaft, 31, 1481-1487.
https://doi.org/10.1002/cber.18980310237
|
[54]
|
Hummers, W.S. and Offeman, R.E. (1958) Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80, 1339. https://doi.org/10.1021/ja01539a017
|
[55]
|
Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W.-F. and Chhowalla, M. (2008) Transparent and Conducting Electrodes for Organic Electronics from Reduced Graphene Oxide. Applied Physics Letters, 92, Article ID: 233305.
https://doi.org/10.1063/1.2937846
|
[56]
|
Shin, H.-J., et al. (2009) Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 19, 1987-1992. https://doi.org/10.1002/adfm.200900167
|
[57]
|
Zhou, X., Zhang, J., Wu, H., Yang, H., Zhang, J. and Guo, S. (2011) Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. The Journal of Physical Chemistry C, 115, 11957-11961.
https://doi.org/10.1021/jp202575j
|
[58]
|
Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A. and Dékány, I. (2003) Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir, 19, 6050-6055.
https://doi.org/10.1021/la026525h
|
[59]
|
Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J. and Guo, S. (2010) Reduction of Graphene Oxide via L-Ascorbic Acid. Chemical Communications, 46, 1112-1114.
https://doi.org/10.1039/b917705a
|
[60]
|
Goncalves, G., Marques, P.A.A.P., Granadeiro, C.M., Nogueira, H.I.S., Singh, M.K. and Grácio, J. (2009) Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chemistry of Materials, 21, 4796-4802.
https://doi.org/10.1021/cm901052s
|
[61]
|
Marcano, D.C., et al., (2010) Improved Synthesis of Graphene Oxide. ACS Nano, 4, 4806-4814.
|
[62]
|
Zhang, L., Li, Y., Zhang, L., Li, D.W., Karpuzov, D. and Long, Y.T. (2011) Electrocatalytic Oxidation of NADH on Graphene Oxide and Reduced Graphene Oxide Modified Screen-Printed Electrode. International Journal of Electrochemical Science, 6, 819-829.
|
[63]
|
Larciprete, R., Fabris, S., Sun, T., Lacovig, P., Baraldi, A. and Lizzit, S. (2011) Dual Path Mechanism in the Thermal Reduction of Graphene Oxide. Journal of the American Chemical Society, 133, 17315-17321. https://doi.org/10.1021/ja205168x
|
[64]
|
Liao, K.H., Mittal, A., Bose, S., Leighton, C., Mkhoyan, K.A. and MacOsko, C.W. (2011) Aqueous Only Route toward Graphene from Graphite Oxide. ACS Nano, 5, 1253-1258. https://doi.org/10.1021/nn1028967
|
[65]
|
An, Wong, C.H., Ambrosi, A. and Pumera, M. (2012) Thermally Reduced Graphenes Exhibiting a Close Relationship to Amorphous Carbon. Nanoscale, 4, 4972-4977. https://doi.org/10.1039/c2nr30989k
|
[66]
|
Viinikanoja, A., Wang, Z., Kauppila, J. and Kvarnstrom, C. (2012) Electrochemical Reduction of Graphene Oxide and Its in Situ Spectroelectrochemical Characterization. Physical Chemistry Chemical Physics, 14, 14003-14009,.
https://doi.org/10.1039/c2cp42253k
|
[67]
|
Shao, Y., Wang, J., Engelhard, M., Wang, C. and Lin, Y. (2010) Facile and Controllable Electrochemical Reduction of Graphene Oxide and Its Applications. Journal of Materials Chemistry, 20, 743-748. https://doi.org/10.1039/b917975e
|
[68]
|
Stroyuk, A.L., et al. (2012) Photochemical Reduction of Graphene Oxide in Colloidal Solution. Theoretical and Experimental Chemistry, 48, 2-13.
|
[69]
|
Krishnamoorthy, K., Veerapandian, M., Kim, G.-S. and Jae Kim, S. (2012) A One Step Hydrothermal Approach for the Improved Synthesis of Graphene Nanosheets. Current Nanoscience, 8, 934-938. https://doi.org/10.2174/157341312803989088
|
[70]
|
Dai, Z., Wang, K., Li, L. and Zhang, T. (2013) Synthesis of Nitrogen-Doped Graphene with Microwave. International Journal of Electrochemical Science, 8, 9384-9389.
|
[71]
|
Chua, C.K. and Pumera, M. (2014) Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chemical Society Reviews, 43, 291-312.
https://doi.org/10.1039/c3cs60303b
|
[72]
|
Jimenez-Cervantes, E., López-Barroso, J., Martínez-Hernández, A.L. and Velasco-Santos, C. (2016) Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules. Recent Advances in Graphene Research, 257-298.
https://doi.org/10.5772/64001
|
[73]
|
Choucair, M., Thordarson, P. and Stride, J.A. (2009) Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication. Nature Nanotechnology, 4, 30-33. https://doi.org/10.1038/nnano.2008.365
|
[74]
|
Van Bommel, A.J., Crombeen, J.E. and Van Tooren A. (1975) LEED and Auger Electron Observations of the SiC(0001) Surface. Surface Science, 48, 463-472.
https://doi.org/10.1016/0039-6028(75)90419-7
|
[75]
|
Berger, C., et al. (2004) Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics. The Journal of Physical Chemistry B, 108, 19912-19916. https://doi.org/10.1021/jp040650f
|
[76]
|
De Heer, W.A., et al. (2007) Epitaxial Graphene. Solid State Communications, 143, 92-100.
|
[77]
|
Juang, Z.-Y., et al. (2009) Synthesis of Graphene on Silicon Carbide Substrates at Low Temperature. Carbon, 47, 2026-2031.
|
[78]
|
Guo, S., Dong, S. and Wang, E. (2010) Three-Dimensional Pt-On-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano, 4, 547-555.
https://doi.org/10.1021/nn9014483
|
[79]
|
Sutter, P.W., Flege, J.-I. and Sutter, E.A. (2008) Epitaxial Graphene on Ruthenium. Nature Materials, 7, 406-411. https://doi.org/10.1038/nmat2166
|
[80]
|
Coraux, J., N’Diaye, A.T., Busse, C. and Michely, T. (2008) Structural Coherency of Graphene on Ir(111). Nano Letters, 8, 565-570. https://doi.org/10.1021/nl0728874
|
[81]
|
Karu, A.E. and Beer, M. (1966) Pyrolytic Formation of Highly Crystalline Graphite Films. Journal of Applied Physics, 37, 2179-2181. https://doi.org/10.1063/1.1708759
|
[82]
|
Perdereau, J. and Rhead, G.E. (1971) LEED Studies of Adsorption on Vicinal Copper Surfaces. Surface Science, 24, 555-571.
https://doi.org/10.1016/0039-6028(71)90281-0
|
[83]
|
Eizenberg, M. and Blakely, J.M. (1979) Carbon Monolayer Phase Condensation on Ni(111). Surface Science, 82, 228-236.
https://doi.org/10.1016/0039-6028(79)90330-3
|
[84]
|
Somani, P.R., Somani, S.P. and Umeno, M. (2006) Planer Nano-Graphenes from Camphor by CVD. Chemical Physics Letters, 430, 56-59.
https://doi.org/10.1016/j.cplett.2006.06.081
|
[85]
|
Obraztsov, A.N., Obraztsova, E.A., Tyurnina, A.V. and Zolotukhin, A.A. (2007) Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness. Carbon, 45, 2017-2021. https://doi.org/10.1016/j.carbon.2007.05.028
|
[86]
|
Li, X., et al. (2009) Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314.
|
[87]
|
Lee, J., Zheng, X., Roberts, R.C. and Feng, P.X.L. (2015) Scanning Electron Microscopy Characterization of Structural Features in Suspended and Non-Suspended Graphene by Customized CVD Growth. Diamond and Related Materials, 54, 64-73.
https://doi.org/10.1016/j.diamond.2014.11.012
|
[88]
|
Shang, N.G., et al. (2008) Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 18, 3506-3514.
https://doi.org/10.1002/adfm.200800951
|
[89]
|
Zhu, M., et al. (2007) A Mechanism for Carbon Nanosheet Formation. Carbon, 45, 2229-2234.
|
[90]
|
Obraztsov, A.N., Zolotukhin, A.A., Ustinov, A.O., Volkov, A.P., Svirko, Y. and Jefimovs, K. (2003) DC Discharge Plasma Studies for Nanostructured Carbon CVD. Diamond and Related Materials, 12, 917-920.
https://doi.org/10.1016/s0925-9635(02)00338-2
|
[91]
|
Wang, J.J., et al. (2004) Free-Standing Subnanometer Graphite Sheets. Applied Physics Letters, 85, 1265-1267.
|
[92]
|
Jǎsek, O., Synek, P., Zajíckováa, L., Elíǎs, M. and Kudrle, V. (2010) Synthesis of carbon Nanostructures by Plasma Enhanced Chemical Vapour Deposition at Atmospheric Pressure. Journal of Electrical Engineering, 61, 311-313.
https://doi.org/10.2478/v10187-011-0049-9
|
[93]
|
Yuan, G.D., et al. (2009) Graphene Sheets via Microwave Chemical Vapor Deposition. Chemical Physics Letters, 467, 361-364.
|
[94]
|
Lee, D.H., Lee, J.A., Lee, W.J., Choi, D.S., Lee, W.J. and Kim, S.O. (2010) Facile Fabrication and Field Emission of Metal-Particle-Decorated Vertical N-Doped Carbon Nanotube/Graphene Hybrid Films. The Journal of Physical Chemistry C, 114, 21184-21189. https://doi.org/10.1021/jp1077714
|
[95]
|
Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A. and Rao, C.N.R. (2009) Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. The Journal of Physical Chemistry C, 113, 4257-4259.
https://doi.org/10.1021/jp900791y
|
[96]
|
Subrahmanyam, K.S., Vivekchand, S.R.C., Govindaraj, A. and Rao, C.N.R. (2008) A Study of Graphenes Prepared by Different Methods: Characterization, Properties and Solubilization. Journal of Materials Chemistry, 18, 1517-1523.
https://doi.org/10.1039/b716536f
|
[97]
|
Panchakarla, L.S., et al. (2009) Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 21, 4726-4730.
|
[98]
|
Ci, L., et al. (2010) Atomic Layers of Hybridized Boron Nitride and Graphene Domains. Nature Materials, 9, 430-435.
|
[99]
|
Park, J.S., Reina, A., Saito, R., Kong, J., Dresselhaus, G. and Dresselhaus, M.S. (2009) G’ Band Raman Spectra of Single, Double and Triple Layer Graphene. Carbon, 47, 1303-1310.
|
[100]
|
Novoselov, K.S., et al. (2005) Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences, 102, 10451-10453.
|
[101]
|
Luican, A., Li, G. and Andrei, E.Y. (2009) Scanning Tunneling Microscopy and Spectroscopy of Graphene Layers on Graphite. Solid State Communications, 149, 1151-1156. https://doi.org/10.1016/j.ssc.2009.02.059
|
[102]
|
Zhang, Y.J., Small, P., Pontius, W.V. and Kim, P. (2005) Fabrication and Electric-Field-Dependent Transport Measurements of Mesoscopic Graphite Devices, Applied Physics Letters, 86, Article ID: 073104. https://doi.org/10.1063/1.1862334
|
[103]
|
Huang, P.Y., et al. (2011) Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts. Nature, 469, 389-392.
|
[104]
|
Wang, Y.Y., et al. (2008) Raman Studies of Monolayer Graphene: The Substrate Effect. The Journal of Physical Chemistry C, 112, 10637-10640.
|
[105]
|
Chandrasekhar, P. (2018) Conducting Polymers, Fundamentals and Applications. Cham: Springer International Publishing, Boston.
|
[106]
|
Ding, X., Liu, H. and Fan, Y. (2015) Graphene-Based Materials in Regenerative Medicine. Advanced Healthcare Materials, 4, 1451-1468.
|
[107]
|
Torrisi, F., et al. (2012) Inkjet-Printed Graphene Electronics. ACS Nano, 6, 2992-3006.
|
[108]
|
Sun, Y., Wu, Q. and Shi, G. (2011) Graphene Based New Energy Materials. Energy and Environmental Science, 4, 1113-1132.
|