[1]
|
D’Orazio, J., Jarrett, S., Amaro-Ortiz, A. and Scott, T. (2013) UV Radiation and the Skin. International Journal of Molecular Sciences, 14, 12222-12248.
https://doi.org/10.3390/ijms140612222
|
[2]
|
Battie, C., Jitsukawa, S., Bernerd, F., Del Bino, S., Marionnet, C. and Verschoore, M. (2014) New Insights in Photoaging, UVA Induced Damage and Skin Types. Experimental Dermatology, 23, 7-12. https://doi.org/10.1111/exd.12388
|
[3]
|
Ng, K.W. and Lau, W.M. (2015) Skin Deep: The Basics of Human Skin Structure and Drug Penetration.
|
[4]
|
Heck, D.E., Vetrano, A.M., Mariano, T.M. and Laskin, J.D. (2003) UVB Light Stimulates Production of Reactive Oxygen Species: Unexpected Role for Catalase. The Journal of Biological Chemistry, 278, 22432-22436.
https://doi.org/10.1074/jbc.C300048200
|
[5]
|
Burke, K.E. (2010) Photoaging: The Role of Oxidative Stress. Giornale Italiano di Dermatologia e Venereologia, 145, 445-459.
|
[6]
|
Rinnerthaler, M., Bischof, J., Streubel, M.K., Trost, A. and Richter, K. (2015) Oxidative Stress in Aging Human Skin. Biomolecules, 5, 545-589.
https://doi.org/10.3390/biom5020545
|
[7]
|
Lippke, J.A., Gordon, L.K., Brash, D.E. and Haseltine, W.A. (1981) Distribution of UV Light-Induced Damage in a Defined Sequence of Human DNA: Detection of Alkaline-Sensitive Lesions at Pyrimidine Nucleoside-Cytidine Sequences. Proceedings of the National Academy of Sciences of the United States of America, 78, 3388-3392. https://doi.org/10.1073/pnas.78.6.3388
|
[8]
|
Nishigori, C. (2006) Cellular Aspects of Photocarcinogenesis. Photochemical & Photobiological Sciences, 5, 208-214. https://doi.org/10.1039/B507471A
|
[9]
|
Schroeder, P., Calles, C. and Krutmann, J. (2009) Prevention of Infrared-A Radiation Mediated Detrimental Effects in Human Skin. Skin Therapy Letter, 14, 4-5.
|
[10]
|
Schroeder, P., Haendeler, J. and Krutmann, J. (2008) The Role of Near Infrared Radiation in Photoaging of the Skin. Experimental Gerontology, 43, 629-632.
https://doi.org/10.1016/j.exger.2008.04.010
|
[11]
|
Chiu, H.W., Chen, C.H., Chen, Y.J. and Hsu, Y.H. (2017) Far-Infrared Suppresses Skin Photoaging in Ultraviolet B-Exposed Fibroblasts and Hairless Mice. PLoS One, 12, e0174042. https://doi.org/10.1371/journal.pone.0174042
|
[12]
|
Hohn, A. and Grune, T. (2013) Lipofuscin: Formation, Effects and Role of Macroautophagy. Redox Biology, 1, 140-144.
https://doi.org/10.1016/j.redox.2013.01.006
|
[13]
|
Jung, T. and Grune, T. (2013) The Proteasome and the Degradation of Oxidized Proteins: Part I-Structure of Proteasomes. Redox Biology, 1, 178-182.
https://doi.org/10.1016/j.redox.2013.01.004
|
[14]
|
Jung, T. and Grune, T. (2008) The Proteasome and Its Role in the Degradation of Oxidized Proteins. IUBMB Life, 60, 743-752. https://doi.org/10.1002/iub.114
|
[15]
|
Widmer, R., Ziaja, I. and Grune, T. (2006) Protein Oxidation and Degradation during Aging: Role in Skin Aging and Neurodegeneration. Free Radical Research, 40, 1259-1268. https://doi.org/10.1080/10715760600911154
|
[16]
|
Sander, C.S., Chang, H., Salzmann, S., Muller, C.S., Ekanayake-Mudiyanselage, S., Elsner, P. and Thiele, J.J. (2002) Photoaging Is Associated with Protein Oxidation in Human Skin in Vivo. Journal of Investigative Dermatology, 118, 618-625.
https://doi.org/10.1046/j.1523-1747.2002.01708.x
|
[17]
|
Clos, A.L., Lasagna-Reeves, C.A., Wagner, R., Kelly, B., Jackson, G.R. and Kayed, R. (2010) Therapeutic Removal of Amyloid Deposits in Cutaneous Amyloidosis by Localised Intra-Lesional Injections of Anti-Amyloid Antibodies. Experimental Dermatology, 19, 904-911. https://doi.org/10.1111/j.1600-0625.2010.01121.x
|
[18]
|
Weids, A.J., Ibstedt, S., Tamás, M.J. and Grant, C.M. (2016) Distinct Stress Conditions Result in Aggregation of Proteins with Similar Properties. Scientific Reports, 6, Article No. 24554. https://doi.org/10.1038/srep24554
|
[19]
|
Squier, T.C. (2001) Oxidative Stress and Protein Aggregation during Biological Aging. Experimental Gerontology, 36, 1539-1550.
https://doi.org/10.1016/S0531-5565(01)00139-5
|
[20]
|
Stroo, E., Koopman, M., Nollen, E.A. and Mata-Cabana, A. (2017) Cellular Regulation of Amyloid Formation in Aging and Disease. Frontiers in Neuroscience, 11, 64.
https://doi.org/10.3389/fnins.2017.00064
|
[21]
|
Turner, D.P. (2015) Advanced Glycation End-Products: A Biological Consequence of Lifestyle Contributing to Cancer Disparity. Cancer Research, 75, 1925-1929.
https://doi.org/10.1158/0008-5472.CAN-15-0169
|
[22]
|
Yamagishi, S., Maeda, S., Matsui, T., Ueda, S., Fukami, K. and Okuda, S. (2012) Role of Advanced Glycation End Products (Ages) and Oxidative Stress in Vascular Complications in Diabetes. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820, 663-671. https://doi.org/10.1016/j.bbagen.2011.03.014
|
[23]
|
Gkogkolou, P. and Bohm, M. (2012) Advanced Glycation End Products: Key Players in Skin Aging? Dermato-Endocrinology, 4, 259-270.
https://doi.org/10.4161/derm.22028
|
[24]
|
Rittie, L. and Fisher, G.J. (2015) Natural and Sun-Induced Aging of Human Skin. Cold Spring Harbor Perspectives in Medicine, 5, a015370.
https://doi.org/10.1101/cshperspect.a015370
|
[25]
|
Mohania, D., Chandel, S., Kumar, P., Verma, V., Digvijay, K., Tripathi, D., Choudhury, K., Mitten, S.K. and Shah, D. (2017) Ultraviolet Radiations: Skin Defense-Damage Mechanism. In: Ahmad, S., Ed., Ultraviolet Light in Human Health, Diseases and Environment. Advances in Experimental Medicine and Biology, Vol. 996, Springer, Cham, 71-87. https://doi.org/10.1007/978-3-319-56017-5_7
|
[26]
|
Maclaine, N.J. and Hupp, T.R. (2009) The Regulation of p53 by Phosphorylation: A Model for How Distinct Signals Integrate into the p53 Pathway. Aging (Albany NY), 1, 490-502. https://doi.org/10.18632/aging.100047
|
[27]
|
Molho-Pessach, V. and Lotem, M. (2007) Ultraviolet Radiation and Cutaneous Carcinogenesis. Current Problems in Dermatology, 35, 14-27.
https://doi.org/10.1159/000106407
|
[28]
|
Rezvani, H.R., Dedieu, S., North, S., Belloc, F., Rossignol, R., Letellier, T., de Verneuil, H., Taieb, A. and Mazurier, F. (2007) Hypoxia-Inducible Factor-1Alpha, a Key Factor in the Keratinocyte Response to UVB Exposure. The Journal of Biological Chemistry, 282, 16413-16422. https://doi.org/10.1074/jbc.M611397200
|
[29]
|
Ray, P.D., Huang, B.W. and Tsuji, Y. (2012) Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24, 981-990.
https://doi.org/10.1016/j.cellsig.2012.01.008
|
[30]
|
Bosch, R., Philips, N., Suarez-Perez, J.A., Juarranz, A., Devmurari, A., Chalensouk-Khaosaat, J. and Gonzalez, S. (2015) Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel), 4, 248-268.
|
[31]
|
Bernerd, F. and Asselineau, D. (1998) UVA Exposure of Human Skin Reconstructed in Vitro Induces Apoptosis of Dermal Fibroblasts: Subsequent Connective Tissue Repair and Implications in Photoaging. Cell Death & Differentiation, 5, 792-802.
https://doi.org/10.1038/sj.cdd.4400413
|
[32]
|
Lee, C.H., Wu, S.B., Hong, C.H., Yu, H.S. and Wei, Y.H. (2013) Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy. International Journal of Molecular Sciences, 14, 6414-6435. https://doi.org/10.3390/ijms14036414
|
[33]
|
Li, L., Chen, X. and Gu, H. (2016) The Signaling Involved in Autophagy Machinery in Keratinocytes and Therapeutic Approaches for Skin Diseases. Oncotarget, 7, 50682-50697. https://doi.org/10.18632/oncotarget.9330
|
[34]
|
Bennett, M.F., Robinson, M.K., Baron, E.D. and Cooper, K.D. (2008) Skin Immune Systems and Inflammation: Protector of the Skin or Promoter of Aging? Journal of Investigative Dermatology Symposium Proceedings, 13, 15-19.
https://doi.org/10.1038/jidsymp.2008.3
|
[35]
|
Fukunaga, A., Khaskhely, N.M., Sreevidya, C.S., Byrne, S.N. and Ullrich, S.E. (2008) Dermal Dendritic Cells, and Not Langerhans Cells, Play an Essential Role in Inducing an Immune Response. The Journal of Immunology, 180, 3057-3064.
https://doi.org/10.4049/jimmunol.180.5.3057
|
[36]
|
Siiskonen, H., Smorodchenko, A., Krause, K. and Maurer, M. (2018) Ultraviolet Radiation and Skin Mast Cells: Effects, Mechanisms and Relevance for Skin Diseases. Experimental Dermatology, 27, 3-8. https://doi.org/10.1111/exd.13402
|
[37]
|
Hart, P.H., Grimbaldeston, M.A., Swift, G.J., Jaksic, A., Noonan, F.P. and Finlay-Jones, J.J. (1998) Dermal Mast Cells Determine Susceptibility to Ultraviolet B-Induced Systemic Suppression of Contact Hypersensitivity Responses in Mice. The Journal of Experimental Medicine, 187, 2045-2053.
https://doi.org/10.1084/jem.187.12.2045
|
[38]
|
Watson, R.E., Gibbs, N.K., Griffiths, C.E. and Sherratt, M.J. (2014) Damage to Skin Extracellular Matrix Induced by UV Exposure. Antioxidants & Redox Signaling, 21, 1063-1077. https://doi.org/10.1089/ars.2013.5653
|
[39]
|
Helfrich, Y.R., Sachs, D.L. and Voorhees, J.J. (2008) Overview of Skin Aging and Photoaging. Dermatology Nursing, 20, 177-183; quiz 184.
|
[40]
|
Pandel, R., Poljsak, B., Godic, A. and Dahmane, R. (2013) Skin Photoaging and the Role of Antioxidants in Its Prevention. ISRN Dermatology, 2013, Article ID: 930164. https://doi.org/10.1155/2013/930164
|
[41]
|
Kumar, D., Rajora, G., Parkash, O., Himanshu, M., Antil, V. and Kumar, V. (2016) Herbal Cosmetics: An Overview. International Journal of Advanced Scientific Research, 1, 36-41.
|
[42]
|
Chermahini, S.H., Majid, F.A.A. and Sarmidi, M.R. (2011) Cosmeceutical Value of Herbal Extracts as Natural Ingredients and Novel Technologies in Anti-Aging. Journal of Medicinal Plants Research, 5, 3074-3077.
|
[43]
|
Saha, R. (2012) Cosmeceuticals and Herbal Drugs: Practical Uses. International Journal of Pharmaceutical Sciences and Research, 2, 59-65.
|
[44]
|
Korac, R.R. and Khambholja, K.M. (2011) Potential of Herbs in Skin Protection from Ultraviolet Radiation. Pharmacognosy Reviews, 5, 164-173.
|
[45]
|
Kostyuk, V., Potapovich, A., Albuhaydar, A.R., Mayer, W., De Luca, C. and Korkina, L. (2018) Natural Substances for Prevention of Skin Photoaging: Screening Systems in the Development of Sunscreen and Rejuvenation Cosmetics. Rejuvenation Research, 21, 91-101. https://doi.org/10.1089/rej.2017.1931
|
[46]
|
Kanlayavattanakul, M. and Lourith, N. (2015) An Update on Cutaneous Aging Treatment Using Herbs. Journal of Cosmetic and Laser Therapy, 17, 343-352.
https://doi.org/10.3109/14764172.2015.1039036
|
[47]
|
Kanlayavattanakul, M. and Lourith, N. (2018) Skin Hyperpigmentation Treatment Using Herbs: A Review of Clinical Evidences. Journal of Cosmetic and Laser Therapy, 20, 123-131. https://doi.org/10.1080/14764172.2017.1368666
|
[48]
|
Chanchal, D. and Swarnlata, S. (2009) Herbal Photoprotective Formulations and Their Evaluation. The Open Natural Products Journal, 2, 71-76.
https://doi.org/10.2174/1874848100902010071
|
[49]
|
Sahu, R.K., Roy, A., Matlam, M., Kumar Deshmukh, V., Dwivedi, J. and Kumar Jha, A. (2013) Review on Skin Aging and Compilation of Scientific Validated Medicinal Plants, Prominence to Flourish a Better Research Reconnoiters in Herbal Cosmetic. Research Journal of Medicinal Plants, 7, 1-22.
https://doi.org/10.3923/rjmp.2013.1.22
|
[50]
|
Cavinato, M., Waltenberger, B., Baraldo, G., Grade, C.V.C., Stuppner, H. and Jansen-Durr, P. (2017) Plant Extracts and Natural Compounds Used against UVB- Induced Photoaging. Biogerontology, 18, 499-516.
https://doi.org/10.1007/s10522-017-9715-7
|
[51]
|
Lee, K.H., Morris-Natschke, S., Qian, K., Dong, Y., Yang, X., Zhou, T., Belding, E., Wu, S.F., Wada, K. and Akiyama, T. (2012) Recent Progress of Research on Herbal Products Used in Traditional Chinese Medicine: The Herbs Belonging to the Divine Husbandman’s Herbal Foundation Canon (Shen Nong Ben Cao Jing). Journal of Traditional and Complementary Medicine, 2, 6-26.
https://doi.org/10.1016/S2225-4110(16)30066-9
|
[52]
|
Li, Y.H., Wu, Y., Wei, H.C., Xu, Y.Y., Jia, L.L., Chen, J., Yang, X.S., Dong, G.H., Gao, X.H. and Chen, H.D. (2009) Protective Effects of Green Tea Extracts on Photoaging and Photommunosuppression. Skin Research and Technology, 15, 338-345.
https://doi.org/10.1111/j.1600-0846.2009.00370.x
|
[53]
|
Lailiyah, I., Prasetyawan, S. and Aulani, A. (2017) Effect of Topical Application of Gel Aloe vera Extract on the UVB-Induced Skin Photoaging in Hairless Rats. The Journal of Pure and Applied Chemistry Research, 6, 112-116.
https://doi.org/10.21776/ub.jpacr.2017.006.02.321
|
[54]
|
Hong, S.W., Chun, J., Park, S., Lee, H.J., Im, J.P. and Kim, J.S. (2018) Aloe vera Is Effective and Safe in Short-Term Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Journal of Neurogastroenterology and Motility, 24, 528-535. https://doi.org/10.5056/jnm18077
|
[55]
|
Surjushe, A., Vasani, R. and Saple, D.G. (2008) Aloe vera: A Short Review. Indian Journal of Dermatology, 53, 163-166. https://doi.org/10.4103/0019-5154.44785
|
[56]
|
DeCarlo, A., Johnson, S., Poudel, A., Satyal, P., Bangerter, L. and Setzer, W.N. (2018) Chemical Variation in Essential Oils from the Oleo-Gum Resin of Boswellia carteri: A Preliminary Investigation. Chemistry & Biodiversity, 15, e1800047.
https://doi.org/10.1002/cbdv.201800047
|
[57]
|
Banerjee, S. and Chatterjee, J. (2015) Efficient Extraction Strategies of Tea (Camellia sinensis) Biomolecules. Journal of Food Science and Technology, 52, 3158-3168.
|
[58]
|
Mizutani, T. and Masaki, H. (2014) Anti-Photoaging Capability of Antioxidant Extract from Camellia Japonica Leaf. Experimental Dermatology, 23, 23-26.
https://doi.org/10.1111/exd.12395
|
[59]
|
Delshad, E., Yousefi, M., Sasannezhad, P., Rakhshandeh, H. and Ayati, Z. (2018) Medical Uses of Carthamus tinctorius L. (Safflower): A Comprehensive Review from Traditional Medicine to Modern Medicine. Electronic Physician, 10, 6672-6681.
https://doi.org/10.19082/6672
|
[60]
|
Auffray, B. (2007) Protection against Singlet Oxygen, the Main Actor of Sebum Squalene Peroxidation during Sun Exposure, Using Commiphora myrrha Essential Oil. International Journal of Cosmetic Science, 29, 23-29.
https://doi.org/10.1111/j.1467-2494.2007.00360.x
|
[61]
|
Ge, C.Y. and Zhang, J.L. (2018) Bioactive Sesquiterpenoids and Steroids from the Resinous Exudates of Commiphora myrrha. Natural Product Research, 1-7.
https://doi.org/10.1080/14786419.2018.1448811
|
[62]
|
Zeng, Q., Zhou, F., Lei, L., Chen, J., Lu, J., Zhou, J., Cao, K., Gao, L., Xia, F., Ding, S., Huang, L., Xiang, H., Wang, J., Xiao, Y., Xiao, R. and Huang, J. (2017) Ganoderma lucidum Polysaccharides Protect Fibroblasts against UVB-Induced Photoaging. Molecular Medicine Reports, 15, 111-116.
https://doi.org/10.3892/mmr.2016.6026
|
[63]
|
Batra, P., Sharma, A.K. and Khajuria, R. (2013) Probing Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Higher Basidiomycetes): A Bitter Mushroom with Amazing Health Benefits. International Journal of Medicinal Mushrooms, 15, 127-143. https://doi.org/10.1615/IntJMedMushr.v15.i2.20
|
[64]
|
Waqas, M.K., Akhtar, N., Mustafa, R., Jamshaid, M., Khan, H.M. and Murtaza, G. (2015) Dermatological and Cosmeceutical Benefits of Glycine Max (Soybean) and Its Active Components. Acta Poloniae Pharmaceutica, 72, 3-11.
|
[65]
|
Li, Y. and Hu, C. (2015) Hippophae rhamnoides L. 沙棘 (Shaji, Common Sea-Buckthorn). In: Liu, Y., Wang, Z. and Zhang, J., Eds., Dietary Chinese Herbs: Chemistry, Pharmacology and Clinical Evidence, Springer, Vienna, 403-415.
https://doi.org/10.1007/978-3-211-99448-1_46
|
[66]
|
Wojtyniak, K., Szymanski, M. and Matlawska, I. (2013) Leonurus cardiaca L. (Motherwort): A Review of Its Phytochemistry and Pharmacology. Phytotherapy Research, 27, 1115-1120. https://doi.org/10.1002/ptr.4850
|
[67]
|
Glynn, K.M., Anderson, P., Fast, D.J., Koedam, J., Rebhun, J.F. and Velliquette, R.A. (2018) Gromwell (Lithospermum erythrorhizon) Root Extract Protects against Glycation and Related Inflammatory and Oxidative Stress While Offering UV Absorption Capability. Experimental Dermatology, 27, 1043-1047.
https://doi.org/10.1111/exd.13706
|
[68]
|
Chang, M.J., Huang, H.C., Chang, H.C. and Chang, T.M. (2008) Cosmetic Formulations Containing Lithospermum erythrorhizon Root Extract Show Moisturizing Effects on Human Skin. Archives of Dermatological Research, 300, 317-323.
https://doi.org/10.1007/s00403-008-0867-9
|
[69]
|
Ishida, T. and Sakaguchi, I. (2007) Protection of Human Keratinocytes from UVB-Induced Inflammation Using Root Extract of Lithospermum erythrorhizon. Biological and Pharmaceutical Bulletin, 30, 928-934.
|
[70]
|
Kim, M.-R., Han, J., Chang, U.-J. and Suh, H.J. (2013) Protective Effect of Ginseng Leaf Extract against UVB-Induced Photoaging in Hairless Mouse. The FASEB Journal, 27, lb307-lb307.
|
[71]
|
Hwang, E., Park, S.Y., Yin, C.S., Kim, H.T., Kim, Y.M. and Yi, T.H. (2017) Antiaging Effects of the Mixture of Panax ginseng and Crataegus pinnatifida in Human Dermal Fibroblasts and Healthy Human Skin. Journal of Ginseng Research, 41, 69-77. https://doi.org/10.1016/j.jgr.2016.01.001
|
[72]
|
Lu, J.M., Yao, Q. and Chen, C. (2009) Ginseng Compounds: An Update on Their Molecular Mechanisms and Medical Applications. Current Vascular Pharmacology, 7, 293-302. https://doi.org/10.2174/157016109788340767
|
[73]
|
Liu, X.Y., Hwang, E., Park, B., Ngo, H.T.T., Xiao, Y.K. and Yi, T.H. (2018) Ginsenoside C-Mx Isolated from Notoginseng Stem-Leaf Ginsenosides Attenuates Ultraviolet B-Mediated Photoaging in Human Dermal Fibroblasts. Photochemistry and Photobiology, 94, 1040-1048. https://doi.org/10.1111/php.12940
|
[74]
|
Peng, M., Yi, Y.X., Zhang, T., Ding, Y. and Le, J. (2018) Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review. Frontiers in Pharmacology, 9, 188.
https://doi.org/10.3389/fphar.2018.00188
|
[75]
|
Chen, D., Du, Z., Lin, Z., Su, P., Huang, H., Ou, Z., Pan, W., Huang, S., Zhang, K., Zheng, X., Lin, L. and Zhang, L. (2018) The Chemical Compositions of Angelica pubescens Oil and Its Prevention of UV-B Radiation-Induced Cutaneous Photoaging. Chemistry & Biodiversity, 15, e1800235.
https://doi.org/10.1002/cbdv.201800235
|
[76]
|
Li, Y., Shi, S., Gao, J., Han, S., Wu, X., Jia, Y., Su, L., Shi, J. and Hu, D. (2016) Cryptotanshinone Downregulates the Profibrotic Activities of Hypertrophic Scar Fibroblasts and Accelerates Wound Healing: A Potential Therapy for the Reduction of Skin Scarring. Biomedicine & Pharmacotherapy, 80, 80-86.
https://doi.org/10.1016/j.biopha.2016.03.006
|
[77]
|
Zhang, X.-L., Chen, M., Zhu, L.-L. and Zhou, Q. (2017) Therapeutic Risk and Benefits of Concomitantly Using Herbal Medicines and Conventional Medicines: From the Perspectives of Evidence Based on Randomized Controlled Trials and Clinical Risk Management. Evidence-Based Complementary and Alternative Medicine, 2017, Article ID: 9296404. https://doi.org/10.1155/2017/9296404
|
[78]
|
Fu, P.P., Xia, Q., Zhao, Y., Wang, S., Yu, H. and Chiang, H.M. (2013) Phototoxicity of Herbal Plants and Herbal Products. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 31, 213-255.
https://doi.org/10.1080/10590501.2013.824206
|
[79]
|
Gaspar, L.R., Tharmann, J., Maia Campos, P.M. and Liebsch, M. (2013) Skin Phototoxicity of Cosmetic Formulations Containing Photounstable and Photostable UV-Filters and Vitamin A Palmitate. Toxicology in Vitro, 27, 418-425.
https://doi.org/10.1016/j.tiv.2012.08.006
|
[80]
|
Oh, M.C., Piao, M.J., Fernando, P.M., Han, X., Madduma Hewage, S.R., Park, J.E., Ko, M.S., Jung, U., Kim, I.G. and Hyun, J.W. (2016) Baicalein Protects Human Skin Cells against Ultraviolet B-Induced Oxidative Stress. Biomolecules & Therapeutics, 24, 616-622. https://doi.org/10.4062/biomolther.2016.022
|
[81]
|
Min, W., Liu, X., Qian, Q., Lin, B., Wu, D., Wang, M., Ahmad, I., Yusuf, N. and Luo, D. (2014) Effects of Baicalin against UVA-Induced Photoaging in Skin Fibroblasts. The American Journal of Chinese Medicine, 42, 709-727.
https://doi.org/10.1142/S0192415X14500463
|
[82]
|
Pedretti, A., Capezzera, R., Zane, C., Facchinetti, E. and Calzavara-Pinton, P. (2010) Effects of Topical Boswellic Acid on Photo and Age-Damaged Skin: Clinical, Biophysical, and Echographic Evaluations in a Double-Blind, Randomized, Split-Face Study. Planta Medica, 76, 555-560. https://doi.org/10.1055/s-0029-1240581
|
[83]
|
Calzavara-Pinton, P., Zane, C., Facchinetti, E., Capezzera, R. and Pedretti, A. (2010) Topical Boswellic Acids for Treatment of Photoaged Skin. Dermatologic Therapy, 23, S28-S32. https://doi.org/10.1111/j.1529-8019.2009.01284.x
|
[84]
|
Yao, K., Chen, H., Liu, K., Langfald, A., Yang, G., Zhang, Y., Yu, D.H., Kim, M.O., Lee, M.H., Li, H., Bae, K.B., Kim, H.G., Ma, W.Y., Bode, A.M., Dong, Z. and Dong, Z. (2014) Kaempferol Targets RSK2 and MSK1 to Suppress UV Radiation-Induced Skin Cancer. Cancer Prevention Research (Phila), 7, 958-967.
https://doi.org/10.1158/1940-6207.CAPR-14-0126
|
[85]
|
Shetty, P.K., Venuvanka, V., Jagani, H.V., Chethan, G.H., Ligade, V.S., Musmade, P.B., Nayak, U.Y., Reddy, M.S., Kalthur, G., Udupa, N., Rao, C.M. and Mutalik, S. (2015) Development and Evaluation of Sunscreen Creams Containing Morin-Encapsulated Nanoparticles for Enhanced UV Radiation Protection and Antioxidant Activity. International Journal of Nanomedicine, 10, 6477-6491.
|
[86]
|
Caselli, A., Cirri, P., Santi, A. and Paoli, P. (2016) Morin: A Promising Natural Drug. Current Medicinal Chemistry, 23, 774-791.
https://doi.org/10.2174/0929867323666160106150821
|
[87]
|
Kang, N.J., Jung, S.K., Lee, K.W. and Lee, H.J. (2011) Myricetin Is a Potent Chemopreventive Phytochemical in Skin Carcinogenesis. Annals of the New York Academy of Sciences, 1229, 124-132. https://doi.org/10.1111/j.1749-6632.2011.06122.x
|
[88]
|
Jung, S.K., Lee, K.W., Kim, H.Y., Oh, M.H., Byun, S., Lim, S.H., Heo, Y.S., Kang, N.J., Bode, A.M., Dong, Z. and Lee, H.J. (2010) Myricetin Suppresses UVB-Induced Wrinkle Formation and MMP-9 Expression by Inhibiting Raf. Biochemical Pharmacology, 79, 1455-1461. https://doi.org/10.1016/j.bcp.2010.01.004
|
[89]
|
Huang, J.H., Huang, C.C., Fang, J.Y., Yang, C., Chan, C.M., Wu, N.L., Kang, S.W. and Hung, C.F. (2010) Protective Effects of Myricetin against Ultraviolet-B-Induced Damage in Human Keratinocytes. Toxicology in Vitro, 24, 21-28.
https://doi.org/10.1016/j.tiv.2009.09.015
|
[90]
|
El-Mahdy, M.A., Zhu, Q., Wang, Q.E., Wani, G., Patnaik, S., Zhao, Q., Arafa, E.-S., Barakat, B., Mir, S.N. and Wani, A.A. (2008) Naringenin Protects HaCaT Human Keratinocytes against UVB-Induced Apoptosis and Enhances the Removal of Cyclobutane Pyrimidine Dimers from the Genome. Photochemistry and Photobiology, 84, 307-316. https://doi.org/10.1111/j.1751-1097.2007.00255.x
|
[91]
|
Jung, S.K., Ha, S.J., Jung, C.H., Kim, Y.T., Lee, H.K., Kim, M.O., Lee, M.H., Mottamal, M., Bode, A.M., Lee, K.W. and Dong, Z. (2016) Naringenin Targets ERK2 and Suppresses UVB-Induced Photoaging. Journal of Cellular and Molecular Medicine, 20, 909-919. https://doi.org/10.1111/jcmm.12780
|
[92]
|
Tanaka, S., Sato, T., Akimoto, N., Yano, M. and Ito, A. (2004) Prevention of UVB-Induced Photoinflammation and Photoaging by a Polymethoxy Flavonoid, Nobiletin, in Human Keratinocytes in Vivo and in Vitro. Biochemical Pharmacology, 68, 433-439. https://doi.org/10.1016/j.bcp.2004.04.006
|
[93]
|
Lee, S., Lim, J.M., Jin, M.H., Park, H.K., Lee, E.J., Kang, S., Kim, Y.S. and Cho, W.G. (2006) Partially Purified Paeoniflorin Exerts Protective Effects on UV-Induced DNA Damage and Reduces Facial Wrinkles in Human Skin. Journal of Cosmetic Science, 57, 57-64.
|
[94]
|
Kong, L., Wang, S., Wu, X., Zuo, F., Qin, H. and Wu, J. (2016) Paeoniflorin Attenuates Ultraviolet B-Induced Apoptosis in Human Keratinocytes by Inhibiting the ROS-p38-p53 Pathway. Molecular Medicine Reports, 13, 3553-3558.
https://doi.org/10.3892/mmr.2016.4953
|
[95]
|
Marini, A., Grether-Beck, S., Jaenicke, T., Weber, M., Burki, C., Formann, P., Brenden, H., Schonlau, F. and Krutmann, J. (2012) Pycnogenol® Effects on Skin Elasticity and Hydration Coincide with Increased Gene Expressions of Collagen Type I and Hyaluronic Acid Synthase in Women. Skin Pharmacology and Physiology, 25, 86-92. https://doi.org/10.1159/000335261
|
[96]
|
Cho, H.S., Lee, M.H., Lee, J.W., No, K.O., Park, S.K., Lee, H.S., Kang, S., Cho, W.G., Park, H.J., Oh, K.W. and Hong, J.T. (2007) Anti-Wrinkling Effects of the Mixture of Vitamin C, Vitamin E, Pycnogenol and Evening Primrose Oil, and Molecular Mechanisms on Hairless Mouse Skin Caused by Chronic Ultraviolet B Irradiation. Photodermatology, Photoimmunology & Photomedicine, 23, 155-162.
https://doi.org/10.1111/j.1600-0781.2007.00298.x
|
[97]
|
Nan, W., Ding, L., Chen, H., Khan, F.U., Yu, L., Sui, X. and Shi, X. (2018) Topical Use of Quercetin-Loaded Chitosan Nanoparticles against Ultraviolet B Radiation. Frontiers in Pharmacology, 9, 826. https://doi.org/10.3389/fphar.2018.00826
|
[98]
|
Maramaldi, G., Togni, S., Pagin, I., Giacomelli, L., Cattaneo, R., Eggenhoffner, R. and Burastero, S.E. (2016) Soothing and Anti-Itch Effect of Quercetin Phytosome in Human Subjects: A Single-Blind Study. Clinical, Cosmetic and Investigational Dermatology, 9, 55-62. https://doi.org/10.2147/CCID.S98890
|
[99]
|
Peres, D.A., de Oliveira, C.A., da Costa, M.S., Tokunaga, V.K., Mota, J.P., Rosado, C., Consiglieri, V.O., Kaneko, T.M., Velasco, M.V. and Baby, A.R. (2016) Rutin Increases Critical Wavelength of Systems Containing a Single UV Filter and with Good Skin Compatibility. Skin Research and Technology, 22, 325-333.
https://doi.org/10.1111/srt.12265
|
[100]
|
Choi, S.J., Lee, S.N., Kim, K., Joo, D.H., Shin, S., Lee, J., Lee, H.K., Kim, J., Kwon, S.B., Kim, M.J., Ahn, K.J., An, I.S., An, S. and Cha, H.J. (2016) Biological Effects of Rutin on Skin Aging. International Journal of Molecular Medicine, 38, 357-363.
https://doi.org/10.3892/ijmm.2016.2604
|
[101]
|
Yuan, X.Y., Pang, X.W., Zhang, G.Q. and Guo, J.Y. (2017) Salidroside’s Protection against UVB-Mediated Oxidative Damage and Apoptosis Is Associated with the Upregulation of Nrf2 Expression. Photomedicine and Laser Surgery, 35, 49-56.
https://doi.org/10.1089/pho.2016.4151
|
[102]
|
Wu, D., Yuan, P., Ke, C., Xiong, H., Chen, J., Guo, J., Lu, M., Ding, Y., Fan, X., Duan, Q., Shi, F. and Zhu, F. (2016) Salidroside Suppresses Solar Ultraviolet-Induced Skin Inflammation by Targeting Cyclooxygenase-2. Oncotarget, 7, 25971-25982.
|
[103]
|
Kimura, Y. and Sumiyoshi, M. (2011) Effects of Baicalein and Wogonin Isolated from Scutellaria baicalensis Roots on Skin Damage in Acute UVB-Irradiated Hairless Mice. European Journal of Pharmacology, 661, 124-132.
https://doi.org/10.1016/j.ejphar.2011.04.033
|
[104]
|
Chi, Y.S., Lim, H., Park, H. and Kim, H.P. (2003) Effects of Wogonin, a Plant Flavone from Scutellaria radix, on Skin Inflammation: In Vivo Regulation of Inflammation-Associated Gene Expression. Biochemical Pharmacology, 66, 1271-1278.
https://doi.org/10.1016/S0006-2952(03)00463-5
|
[105]
|
Fields, K., Falla, T.J., Rodan, K. and Bush, L. (2009) Bioactive Peptides: Signaling the Future. Journal of Cosmetic Dermatology, 8, 8-13.
https://doi.org/10.1111/j.1473-2165.2009.00416.x
|
[106]
|
Linder, J. (2012) The Science behind Peptides. Plastic Surgical Nursing, 32, 71-72.
https://doi.org/10.1097/PSN.0b013e3182577344
|
[107]
|
Schagen, S. (2017) Topical Peptide Treatments with Effective Anti-Aging Results. Cosmetics, 4, 16. https://doi.org/10.3390/cosmetics4020016
|
[108]
|
Farwick, M., Grether-Beck, S., Marini, A., Maczkiewitz, U., Lange, J., Kohler, T., Lersch, P., Falla, T., Felsner, I., Brenden, H., Jaenicke, T., Franke, S. and Krutmann, J. (2011) Bioactive Tetrapeptide GEKG Boosts Extracellular Matrix Formation: In Vitro and in Vivo Molecular and Clinical Proof. Experimental Dermatology, 20, 602-604. https://doi.org/10.1111/j.1600-0625.2011.01307.x
|
[109]
|
Marini, A., Farwick, M., Grether-Beck, S., Brenden, H., Felsner, I., Jaenicke, T., Weber, M., Schild, J., Maczkiewitz, U., Kohler, T., Bonfigli, A., Pagani, V. and Krutmann, J. (2012) Modulation of Skin Pigmentation by the Tetrapeptide PKEK: In Vitro and in Vivo Evidence for Skin Whitening Effects. Experimental Dermatology, 21, 140-146. https://doi.org/10.1111/j.1600-0625.2011.01415.x
|
[110]
|
Mathur, D., Mehta, A., Firmal, P., Bedi, G., Sood, C., Gautam, A. and Raghava, G.P.S. (2018) TopicalPdb: A Database of Topically Delivered Peptides. PLoS ONE, 13, e0190134. https://doi.org/10.1371/journal.pone.0190134
|
[111]
|
Pyun, H.B., Kim, M., Park, J., Sakai, Y., Numata, N., Shin, J.Y., Shin, H.J., Kim, D.U. and Hwang, J.K. (2012) Effects of Collagen Tripeptide Supplement on Photoaging and Epidermal Skin Barrier in UVB-Exposed Hairless Mice. Preventive Nutrition and Food Science, 17, 245-253. https://doi.org/10.3746/pnf.2012.17.4.245
|
[112]
|
Aldag, C., Nogueira Teixeira, D. and Leventhal, P.S. (2016) Skin Rejuvenation Using Cosmetic Products Containing Growth Factors, Cytokines, and Matrikines: A Review of the Literature. Clinical, Cosmetic and Investigational Dermatology, 9, 411-419. https://doi.org/10.2147/CCID.S116158
|
[113]
|
Fitzpatrick, R.E. and Rostan, E.F. (2003) Reversal of Photodamage with Topical Growth Factors: A Pilot Study. Journal of Cosmetic and Laser Therapy, 5, 25-34.
https://doi.org/10.1080/14764170310000817
|
[114]
|
Gorouhi, F. and Maibach, H.I. (2009) Role of Topical Peptides in Preventing or Treating Aged Skin. International Journal of Cosmetic Science, 31, 327-345.
https://doi.org/10.1111/j.1468-2494.2009.00490.x
|
[115]
|
Malerich, S. and Berson, D. (2014) Next Generation Cosmeceuticals: The Latest in Peptides, Growth Factors, Cytokines, and Stem Cells. Dermatologic Clinics, 32, 13-21. https://doi.org/10.1016/j.det.2013.09.003
|
[116]
|
Bos, J.D. and Meinardi, M.M. (2000) The 500 Dalton Rule for the Skin Penetration of Chemical Compounds and Drugs. Experimental Dermatology, 9, 165-169.
https://doi.org/10.1034/j.1600-0625.2000.009003165.x
|
[117]
|
Benson, H.A. and Namjoshi, S. (2008) Proteins and Peptides: Strategies for Delivery to and Across the Skin. Journal of Pharmaceutical Sciences, 97, 3591-3610.
https://doi.org/10.1002/jps.21277
|
[118]
|
Kumar, S., Zakrewsky, M., Chen, M., Menegatti, S., Muraski, J.A. and Mitragotri, S. (2015) Peptides as Skin Penetration Enhancers: Mechanisms of Action. Journal of Controlled Release, 199, 168-178. https://doi.org/10.1016/j.jconrel.2014.12.006
|
[119]
|
Priyanka, K. and Singh, S. (2014) A Review on Skin Targeted Delivery of Bioactives as Ultradeformable Vesicles: Overcoming the Penetration Problem. Current Drug Targets, 15, 184-198. https://doi.org/10.2174/1389450115666140113100338
|
[120]
|
Man, M., Hupe, M., Mackenzie, D., Kim, H., Oda, Y., Crumrine, D., Lee, S.H., Martin-Ezquerra, G., Trullas, C., Mauro, T.M., Feingold, K.R., Elias, P.M. and Man, M.Q. (2011) A Topical Chinese Herbal Mixture Improves Epidermal Permeability Barrier Function in Normal Murine Skin. Experimental Dermatology, 20, 285-288.
https://doi.org/10.1111/j.1600-0625.2010.01205.x
|
[121]
|
Hou, M., Sun, R., Hupe, M., Kim, P.L., Park, K., Crumrine, D., Lin, T.K., Santiago, J.L., Mauro, T.M., Elias, P.M. and Man, M.Q. (2013) Topical Apigenin Improves Epidermal Permeability Barrier Homoeostasis in Normal Murine Skin by Divergent Mechanisms. Experimental Dermatology, 22, 210-215.
https://doi.org/10.1111/exd.12102
|
[122]
|
Hou, M., Man, M., Man, W., Zhu, W., Hupe, M., Park, K., Crumrine, D., Elias, P.M. and Man, M.Q. (2012) Topical Hesperidin Improves Epidermal Permeability Barrier Function and Epidermal Differentiation in Normal Murine Skin. Experimental Dermatology, 21, 337-340. https://doi.org/10.1111/j.1600-0625.2012.01455.x
|
[123]
|
Abraham, A.N., Sharma, T.K., Bansal, V. and Shukla, R. (2018) Phytochemicals as Dynamic Surface Ligands to Control Nanoparticle-Protein Interactions. ACS Omega, 3, 2220-2229. https://doi.org/10.1021/acsomega.7b01878
|
[124]
|
Murakami, A. (2018) Non-Specific Protein Modifications May Be Novel Mechanism Underlying Bioactive Phytochemicals. Journal of Clinical Biochemistry and Nutrition, 62, 115-123.
|
[125]
|
Tsuchiya, H. (2015) Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants. Molecules, 20, 18923-18966. https://doi.org/10.3390/molecules201018923
|
[126]
|
Huang, W., Shen, S., Nimalaratne, C., Li, S., Majumder, K. and Wu, J. (2012) Effects of Addition of Egg Ovotransferrin-Derived Peptides on the Oxygen Radical Absorbance Capacity of Different Teas. Food Chemistry, 135, 1600-1607.
https://doi.org/10.1016/j.foodchem.2012.05.093
|