[1]
|
Anastas, P.T. and Warner, J.C. (1998) Green Chemistry, Theory and Practice. Oxford University Press, Oxford.
|
[2]
|
Polshettiwar, V. and Varma, R.S. (2008) Microwave-Assisted Organic Synthesis and Transformations Using Benign Reaction Media. Accounts of Chemical Research, 41, 629-639. https://doi.org/10.1021/ar700238s
https://pubs.acs.org/doi/abs/10.1021/ar700238s
|
[3]
|
Polshettiwar, V. and Varma, R.S. (2008) Aqueous Microwave Chemistry: A Clean and Green Synthetic Tool for Rapid Drug Discovery. Chemical Society Reviews, 37, 1546-1557. https://doi.org/10.1039/b716534j
http://pubs.rsc.org/en/content/articlelanding/2008/cs/b716534j/unauth#!divAbstract
|
[4]
|
Toda, F. and Tanaka, K. (2000) Solvent-Free Organic Synthesis. Chemical Reviews, 100, 1025-1074. https://pubs.acs.org/doi/abs/10.1021/cr940089p
https://doi.org/10.1021/cr940089p
|
[5]
|
Varma, R.S. (2002) Clay and Clay-Supported Reagents in Organic Synthesis. Tetrahedron, 58, 1235-1255. https://doi.org/10.1016/S0040-4020(01)01216-9
http://parazite.nn.fi/hiveboard/picproxie_docs/000458467-Tetrahedron_58_2002_1235-1255.pdf
|
[6]
|
Varma, R.S. (1999) Solvent-Free Organic Syntheses Using Supported Reagents and Microwave Irradiation. Green Chemistry, 1, 43-55.
http://pubs.rsc.org/en/content/articlehtml/1999/gc/a808223e
https://doi.org/10.1039/a808223e
|
[7]
|
Greene, T.W. and Wuts, P.G.M. (1999) Protective Groups in Organic Synthesis. 3rd Edition, John Wiley and Sons, New York, 306.
|
[8]
|
Heerden, F.R., Huyser, J.J., Williams, D.B.G. and Holzapfer, C.W. (1998) Palladium-Catalysed Substitution Reactions of Geminal Allylic Diacetates. Tetrahedron Letters, 39, 5281-5284. https://doi.org/10.1016/S0040-4039(98)01000-4
https://www.sciencedirect.com/science/article/pii/S0040403998010004
|
[9]
|
Trost, B.M. and Lee, C. (2001) Gem-Diacetates as Carbonyl Surrogates for Asymmetric Synthesis. Total Syntheses of Sphingofungins E and F. Journal of the American Chemical Society, 123, 12191-12201.
https://pubs.acs.org/doi/abs/10.1021/ja0118338
https://doi.org/10.1021/ja0118338
|
[10]
|
Sandberg, M. and Sydnes, L.K. (1998) The Chemistry of Acylals. Part II. Formation of Nitriles by Treatment of Acylals with Trimethylsilyl Azide in the Presence of a Lewis Acid. Tetrahedron Letters, 39, 6361-6364.
https://www.sciencedirect.com/science/article/pii/S0040403998013094
https://doi.org/10.1016/S0040-4039(98)01309-4
|
[11]
|
Kochhar, K.S., Bal, B.S., Deshpande, R.P., Rajadhyaksha, S.N. and Pinnick, H.W. (1983) Protecting Groups in Organic Synthesis. Part 8. Conversion of Aldehydes into Geminal Diacetates. Journal of Organic Chemistry, 48, 1765-1767.
https://pubs.acs.org/doi/abs/10.1021/jo00158a036?journalCode=joceah
https://doi.org/10.1021/jo00158a036
|
[12]
|
Tomita, M., Kikuchi, T., Bessho, K., Hori, T. and Inubushi, Y. (1963) Studies on Pilocereine and Related Compounds. III. Synthesis of 2, 2’, 3-Trimethoxydiphenyl Ether-4’, 5- and -4’, 6-Dicarboxaldehyde. Chemical and Pharmaceutical Bulletin, 11, 1484-1490. https://doi.org/10.1248/cpb.11.1484
https://www.jstage.jst.go.jp/article/cpb1958/11/12/11_12_1484/_article/-char/en
|
[13]
|
Davey, W. and Gwilt, J.R. (1957) Chalcones and Related Compounds. Part I. Preparation of Nitro-, Amino-, and Halogeno-Chalcones. Journal of the Chemical Society, 0, 1008-1014. https://doi.org/10.1039/jr9570001008
http://pubs.rsc.org/en/content/articlelanding/1957/jr/jr9570001008/unauth#!divAbstract
|
[14]
|
Marshall, J. and Wuts, P.G.M. (1977) Stereoselective Synthesis of Racemic Occidentalol and Related Cis-Fused Hexahydronaphthalenes from M-Toluic Acid. Journal of Organic Chemistry, 42, 1794-1798.
https://pubs.acs.org/doi/abs/10.1021/jo00430a027?journalCode=joceah
https://doi.org/10.1021/jo00430a027
|
[15]
|
Deka, N., Kalita, D.J., Borah, R. and Sarma, J.C. (1997) Iodine as Acetylation Catalyst in the Preparation of 1,1-Diacetates from Aldehydes. Journal of Organic Chemistry, 62, 1563-1564. https://doi.org/10.1021/jo961741e
https://pubs.acs.org/doi/abs/10.1021/jo961741e?journalCode=joceah
|
[16]
|
Scriabire, I. (1961) Nouveau procédé de préparation des aldéhydes dihidrocinnamique. Bulletin de la Société Chimique de France, 1194.
|
[17]
|
Wang, C.D. and Li, M.H. (2002) A Novel and Efficient Conversion of Aldehydes to 1,1-diacetates Catalyzed with FeCl3/SiO2 under Microwave Irradiation. Synthetic Communication, 32, 3469-3473. https://doi.org/10.1081/SCC-120014779
https://www.tandfonline.com/doi/abs/10.1081/SCC-120014779
|
[18]
|
Yadav, J.S., Reddy, B.V.S. and Srinivas, C. (2002) Indium Trichloride Catalyzed Chemoselective Conversion of Aldehydes to gem-Diacetates. Synthetic Communication, 32, 1175-1180. https://www.tandfonline.com/doi/abs/10.1081/SCC-120003607
|
[19]
|
Yin, L., Zhang, Z.H., Wang, Y.M. and Pang, M.L. (2004) Indium Tribromide as a Highly Efficient and Versatile Catalyst for Chemoselective Synthesis of Acylals from Aldehydes under Solvent-Free Conditions. Synlett, 10, 1727-1730.
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2004-829549
|
[20]
|
Heravi, M.M., Bakhtiari, K., Benmorad, T. and Oskooie, H.A. (2007) VSO45H2O: A Mild and Efficient Catalyst for Chemo-Selective Conversion of Aldehydes to 1,1-Diacetates. Journal of the Chinese Chemical Society, 54, 273-275.
https://onlinelibrary.wiley.com/doi/abs/10.1002/jccs.200700040
|
[21]
|
Karimi, B. and Maleki, J. (2003) Lithium Trifluoromethanesulfonate (LiOTf) as a Recyclable Catalyst for Highly Efficient Acetylation of Alcohols and Diacetylation of Aldehydes under Mild and Neutral Reaction Conditions. Journal of Organic Chemistry, 68, 4951-4954. https://doi.org/10.1021/jo026678+
https://pubs.acs.org/doi/abs/10.1021/jo026678%2B?journalCode=joceah
|
[22]
|
Ghosh, R., Maiti, S., Chakraborty, A. and Halder, R. (2004) Indium Triflate: A Reusable Catalyst for Expeditious Chemoselective Conversion of Aldehydes to Acylals. Journal of Molecular Catalysis A: Chemical, 215, 49-53.
https://www.sciencedirect.com/science/article/pii/S1381116904000573
https://doi.org/10.1016/j.molcata.2004.01.018
|
[23]
|
Jin, T.S., Sun, G., Li, Y.W. and Li, T.S. (2002) An Efficient and Convenient Procedure for the Preparation of 1,1-Diacetates from Aldehydes Catalyzed by H2NSO3H. Green Chemistry, 4, 255-256. https://doi.org/10.1039/b200219a
http://pubs.rsc.org/en/content/articlelanding/2002/gc/b200219a/unauth#!divAbstract
|
[24]
|
Karimi, B., Ebrahimian, B.G.R. and Seradj, H. (2002) Highly Efficient and Chemoselective Conversion of Aldehydes to Acylals Catalyzed with Tungsten Hexachloride (WCl6). Synthetic Communication, 32, 669-673.
https://www.tandfonline.com/doi/abs/10.1081/SCC-120002503
https://doi.org/10.1081/SCC-120002503
|
[25]
|
Firouzabadi, H., Iranpoor, N., Nowrouzi, F. and Amani, K. (2003) Aluminum Dodecatungstophosphate (AlPW12O40) as an Efficient Heterogeneous Inorganic Catalyst for the Chemoselective Synthesis of Geminal Diacetates (Acylals) under Solvent-Free Conditions. Tetrahedron Letters, 44, 3951-3954.
https://www.sciencedirect.com/science/article/pii/S0040403903008116
https://doi.org/10.1016/S0040-4039(03)00811-6
|
[26]
|
Romanelli, G.P., Thomas, H.J., Baronetti, G.T. and Autino, J.C. (2003) Solvent-Free Catalytic Preparation of 1,1-Diacetates from Aldehydes Using a Wells-Dawson Acid (H6P2W18O62·24H2O). Tetrahedron Letters, 44, 1301-1303.
https://www.sciencedirect.com/science/article/pii/S0040403902028174
https://doi.org/10.1016/S0040-4039(02)02817-4
|
[27]
|
Curini, M., Epifano, F., Marcotullio, M.C., Rosati, O. and Nocchetti, M. (2002) Preparation and Deprotection of 1,1-Diacetates (Acylals) Using Zirconium Sulfophenyl Phosphonate as Catalyst. Tetrahedron Letters, 43, 2709-2711.
https://www.sciencedirect.com/science/article/pii/S0040403902003696
https://doi.org/10.1016/S0040-4039(02)00369-6
|
[28]
|
Smitha, G. and Reddy, C.S. (2003) A Facile and Efficient ZrCl4 Catalyzed Conversion of Aldehydes to Geminal-Diacetates and Dipivalates and Their Cleavage. Tetrahedron, 59, 9571-9576. https://doi.org/10.1016/j.tet.2003.10.002
https://www.sciencedirect.com/science/article/pii/S0040402003015813
|
[29]
|
Ziyaei, A., Azizi, N. and Saidi, M.R. (2005) Chemoselective and Convenient Preparation of 1,1-Diacetates from Aldehydes, Mediated by Solid Lithium Perchlorate under Solvent-Free Conditions. Journal of Molecular Catalysis A: Chem, 238, 138-141. https://doi.org/10.1016/j.molcata.2005.05.022
https://www.sciencedirect.com/science/article/pii/S138111690500364X
|
[30]
|
Sebti, S., Tahir, R., Nazih, R., Saber, A. and Boulaajaj, S. (2002) Hydroxyapatite as a New Solid Support for the Knoevenagel Reaction in Heterogeneous Media without Solvent. Applied Catalysis A, 228, 155-159.
https://www.sciencedirect.com/science/article/pii/S0926860X01009619
https://doi.org/10.1016/S0926-860X(01)00961-9
|
[31]
|
Sebti, S., Nazih, R., Tahir, R., Salhi, L. and Saber, A. (2000) Fluorapatite: New Solid Catalyst of the Knoevenagel Reaction in Heterogeneous Media without Solvent. Applied Catalysis A, 197, L187-L190.
https://doi.org/10.1016/S0926-860X(99)00492-5
https://www.sciencedirect.com/science/article/pii/S0926860X99004925
|
[32]
|
Sebti, S., Tahir, R., Nazih, R. and Boulaajaj, S. (2001) Comparison of Different Lewis Acid Supported on Hydroxyapatite as New Catalysts of Friedel-Crafts Alkylation. Applied Catalysis A: General, 218, 25-30.
https://www.sciencedirect.com/science/article/pii/S0926860X01005993
https://doi.org/10.1016/S0926-860X(01)00599-3
|
[33]
|
Saber, A., Smahi, A., Solhy, A., Nazih, R., Elaabar, B., Maizi, M. and Sebti, S. (2003) Heterogeneous Catalysis of Friedel-Crafts Alkylation by the Fluorapatite Alone and Doped with Metal Halides. Journal of Molecular Catalysis A, 202, 229-237.
https://www.sciencedirect.com/science/article/pii/S1381116903001869
https://doi.org/10.1016/S1381-1169(03)00186-9
|
[34]
|
Tahir, R., Banert, K. and Sebti, S. (2006) Natural and Synthetic Phosphates: New and Clean Heterogeneous Catalysts for the Synthesis of 5-Arylhydantoins. Applied Catalysis A: General, 298, 261-264. https://doi.org/10.1016/j.apcata.2005.09.024
https://www.sciencedirect.com/science/article/pii/S0926860X05007222
|
[35]
|
Tahir, R., Banert, K., Solhy, S. and Sebti, S. (2006) Zinc Bromide Supported on Hydroxyapatite as a New and Efficient Solid Catalyst for Michael Addition of Indoles to Electron-Deficient Olefins. Journal of Molecular Catalysis A, 246, 39-42.
https://www.sciencedirect.com/science/article/pii/S1381116905007259
https://doi.org/10.1016/j.molcata.2005.10.012
|
[36]
|
Zahouily, M., Mounir, B., Charki, H., Mezdar, A., Bahlaouan, B. and Ouammou, M. (2006) Investigation of the Basic Catalytic Activity of Natural Phosphates in the Michael Condensation. Arkivoc, 13, 178-186.
https://www.arkat-usa.org/get-file/22824/
|
[37]
|
Bazi, F., El Badaoui, H., Tamani, S., Sokori, S., Solhy, A., Macquarrie, D.J. and Sebti, S. (2006) A Facile Synthesis of Amides by Selective Hydration of Nitriles Using Modified Natural Phosphate and Hydroxyapatite as New Catalysts. Applied Catalysis A, 301, 211-214. https://doi.org/10.1016/j.apcata.2005.12.003
|
[38]
|
https://www.sciencedirect.com/science/article/pii/S0926860X05009269
|
[39]
|
Mounir, B., Bazi, F., Mounir, A., Toufik, H. and Zahouily, M. (2018) Sodium-Modified Fluorapatite: A Mild and Efficient Reusable Catalyst for the Synthesis of α,α’-Bis(Substituted Benzylidene) Cycloalkanones under Conventional Heating and Microwave Irradiation. Green and Sustainable Chemistry, 8, 156-166.
http://www.scirp.org/journal/PaperInformation.aspx?paperID=84414
https://doi.org/10.4236/gsc.2018.82011
|
[40]
|
Lidstrom, P., Tierney, J., Wathey, B. and Westman, J. (2001) Microwave Assisted Organic Synthesis. Tetrahedron, 57, 925-9283.
https://www.erowid.org/archive/rhodium/pdf/microwave.organic.chemistry.review.pdf https://doi.org/10.1016/S0040-4020(01)00906-1
|
[41]
|
Rezayati, S., Hajinasiri, R. and Erfani, Z. (2016) Microwave-Assisted Green Synthesis of 1,1-Diacetates (acylals) Using SelectfluorTM as an Environmental Friendly Catalyst under Solvent-Free Conditions. Research on Chemical Intermediates, 42, 2567-2576. https://doi.org/10.1007/s11164-015-2168-1
https://link.springer.com/article/10.1007/s11164-015-2168-1
|
[42]
|
Naeimi, H., Kiani, F. and Moradian, M. (2018) Rapid Microwave Promoted Heterocyclization of Primary Amines with Triethyl Orthoformate and Sodium Azide Using Zinc Sulfide Nanoparticles as Recyclable Catalyst. Green Chemistry Letters and Reviews, 11, 361-369. https://doi.org/10.1080/17518253.2018.1510990
https://www.tandfonline.com/doi/pdf/10.1080/17518253.2018.1510990
|