[1]
|
Urbani, M., Gra?tzel, M., Nazeeruddin, M.K. and Torres, T. (2014) Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. American Chemical Society, 114, 12330-12396.
|
[2]
|
Brédas, J.-L., Norton, J. E., Cornil, J. and Coropceanu, V. (2009) Molecular Understanding of Organic Solar Cells: The Challenges. Accounts of Chemical Research, 42, 1691-1699.
|
[3]
|
Yuan, H., Wang, W., Xu, D., Xu, Q., Xie, J., Chen, X., Zhang, T., Xiong, C., He, Y., Zhang, Y., Liu, Y. and Shen, H. (2018) Outdoor Testing and Ageing of Dye-Sensitized Solar Cells for Building Integrated Photovoltaics. Solar Energy, 165, 233-239.
|
[4]
|
O’Regan, B. and Gr?tzel, M. (1991) A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737-740.
|
[5]
|
Kanaparthi, R.K., Kandhadi, J. and Giribabu, L. (2012) Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: Recent Advances. Tetrahedron, 68, 8383-8393.
|
[6]
|
Jose, R., Thavasi, V. and Ramakrishna, S. (2009) Metal Oxides for Dye-Sensitized Solar Cells. Journal of the American Ceramic Society, 92, 289-301.
|
[7]
|
Gr?tzel, M. (2001) Photoelectrochemical Cells. Nature, 414, 338-344.
|
[8]
|
Dongre, J. (2017) A Comparative Study on the CDS Sensitized and Dye-Sensitized ZnO Photoelectrodes Based on Solar Cell Performance. International Journal of Applied Research, 3, 504-507.
|
[9]
|
Abdalla, J., Huang, Y.-W., Yu, Q.-J., Wang, J.-Z., Wang, J.-N., Yu, C.-L., Gao, S.-Y., Jiao, S.-J., Wang, D.-B. and Alarabi, A. (2017) TiCl4 Surface-Treated SnO2 Photoanodes for Self-Powered UV Photodetectors and Dye-Sensitized Solar Cells. Materials Technology, 32, 443-450.
|
[10]
|
Arbab, A.A., Peerzada, M.H., Sahito, I.A. and Jeong, S.H. (2017) A Complete Carbon Counter Electrode for high Performance Quasi Solid State Dye Sensitized Solar Cell. Journal of Power Sources, 343, 412-423.
|
[11]
|
Narayan, M.R. (2011) Review: Dye Sensitized Solar Cells Based on Natural Photosensitizers. Elsevier, 16, 208-215.
|
[12]
|
Nishio, Y., Yamaguchi, T., Yamguchi, T., Nishio, K. and Hayase, S. (2016) Transparent Conductive Oxide-Less Dye-Sensitized Solar Cells (TCO-Less DSSC) with Titanium Nitride Compact Layer on Back Contact Ti Metal Mesh. Journal of Applied Electrochemistry, 46, 551-557.
|
[13]
|
Shalini, S., Balasundaraprabhu, R., Kumar, T.S., Prabavathy, N., Senthilarasu, S. and Prasanna, S. (2016) Status and Outlook of Sensitizers/Dyes Used in Dye Sensitized Solar Cells (DSSC): A Review. International Journal of Energy Research, 40, 1303-1320.
|
[14]
|
Arakawa, H., Yamaguchi, T., Okada, K., Matsui, H., Kitamura, T. and Tanabe, N. (2009) Highly Durable Dye-Sensitized Solar Cells. Fujikura Technical Review, 55-59.
|
[15]
|
Li, B., Wang, L., Kang, B., Wang, P. and Qiu, Y. (2006) Review of Recent Progress in Solid-State Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 90, 549-573.
|
[16]
|
Lee, C.W., Lu, H.P., Lan, C.M., Huang, Y.L., Liang, Y.R., Yen, W.N., Liu, Y.C., Lin, Y.S., Diau, E.W.G. and Yeh, C.Y. (2009) Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties. Chemistry—A European Journal, 15, 1403-1412.
https://doi.org/10.1002/chem.200801572
|
[17]
|
Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H. and Arakawa, H. (2003) Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 107, 597-606.
https://doi.org/10.1021/jp026963x
|
[18]
|
Santhanamoorthi, N., Lo, C.-M. and Jiang, J.-C. (2013) Molecular Design of Porphyrins for Dye-Sensitized Solar Cells: A DFT/TDDFT Study. The Journal of Physical Chemistry Letters, 4, 524-530. https://pubs.acs.org/doi/abs/10.1021/jz302101j
https://doi.org/10.1021/jz302101j
|
[19]
|
Wu, Y., Marszalek, M., Zakeeruddin, S.M., Zhang, Q., Tian, H., Gr?tzel, M. and Zhu, W. (2012) High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells: Molecular Engineering on D-A-π-A Featured Organic Indoline Dyes. Energy & Environmental Science, 5, 8261-8272. https://doi.org/10.1039/c2ee22108j
|
[20]
|
Alhamed, M., Issa, A.S. and Doubal, A.W. (2012) Studying of Natural Dyes Properties as Photo-Sensitizer for Dye Sensitized Solar Cells (DSSC). Journal of Electron Devices, 16, 1370-1383.
|
[21]
|
Wongcharee, K., Meeyoo, V. and Chavadej, S. (2007) Dye-Sensitized Solar Cell Using Natural Dyes Extracted from Rosella and Blue Pea Flowers. Solar Energy Materials and Solar Cells, 91, 566-571. https://doi.org/10.1016/j.solmat.2006.11.005
|
[22]
|
Chang, H., Wu, H., Chen, T., Huang, K., Jwo, C. and Lo, Y. (2010) Dye-Sensitized Solar Cell Using Natural Dyes Extracted from Spinach and Ipomoea. Journal of Alloys and Compounds, 495, 606-610. https://doi.org/10.1016/j.jallcom.2009.10.057
|
[23]
|
Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N. and Han, L. (2006) Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1 %. Japanese Journal of Applied Physics, 45, L638-L640. https://doi.org/10.1143/JJAP.45.L638
|
[24]
|
Nazeeruddin, M.K., Baranoff, E. and Gr?tzel, M. (2011) Dye-Sensitized Solar Cells: A Brief Overview. Solar Energy, 85, 1172-1178.
https://doi.org/10.1016/j.solener.2011.01.018
|
[25]
|
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Pettersson, H. (2010) Dye-Sensitized Solar Cells. Chemical Reviews—American Chemical Society, 110, 6595-6663.
https://doi.org/10.1021/cr900356p
|
[26]
|
Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K. and Gratzel, M. (2014) Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nature Chemistry, 6, 242-247.
https://doi.org/10.1038/nchem.1861
|
[27]
|
Xu, J., Zhang, H., Liang, G., Wang, L., Weilin, X., Cui, W. and Zengchang, L. (2010) DFT Studies on the Electronic Structures of Indoline Dyes for Dye-Sensitized Solar Cells. Journal of the Serbian Chemical Society, 75, 259-269.
https://doi.org/10.2298/JSC1002259X
|
[28]
|
Han, M.W., Ekanayake, P., Ming, L.C. and Yoong, V.N. (2015) DFT/TD-DFT Studies on the Lawsone (Henna) as a Photosensitizer for Dye-Sensitized Solar Cells. Applied Mechanics and Materials, 789-790, 56-60.
|
[29]
|
Sun, C., Li, Y., Song, P. and Ma, F. (2016) An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application. Materials, 9, 1-22.
https://doi.org/10.3390/ma9100813
|
[30]
|
Le Bahers, T., Pauporté, T., Scalmani, G., Adamo, C. and Ciofini, I. (2009) A TD-DFT Investigation of Ground and Excited State Properties in Indoline Dyes Used for Dye-Sensitized Solar Cells. Physical Chemistry Chemical Physics, 11, 11276-11284. https://doi.org/10.1039/b914626a
|
[31]
|
Keerthi, A., Chua, M.H., Timothy Chan, T.Y., Liu, Y., Wang, Q. and Valiyaveettil, S. (2016) Synthesis of Multi-Donor Dyes and Influence of Molecular Design on Dye-Sensitized Solar Cells. The Royal Society of Chemistry, 6, 51807-51815.
https://doi.org/10.1039/C6RA08530J
|
[32]
|
Ren, P., Zhang, Y., Luo, Z., Song, P. and Li, Y. (2017) Theoretical and Experimental Study on Spectra, Electronic Structure and Photoelectric Properties of Three Nature Dyes Used for Solar Cells. Journal of Molecular Liquids, 247, 193-206.
https://doi.org/10.1016/j.molliq.2017.09.088
|
[33]
|
El-Shishtawy, R.M. (2009) Functional Dyes, and Some Hi-Tech Applications. International Journal of Photoenergy, 2009, Article ID: 434897.
|
[34]
|
Kim, B.G., Chung, K. and Kim, J. (2013) Molecular Design Principle of All-Organic Dyes for Dye-Sensitized Solar Cells. Chemistry, 19, 5220-5230.
https://doi.org/10.1002/chem.201204343
|
[35]
|
Morita, S., Ikegami, M., Wei, T.C. and Miyasaka, T. (2014) Quantum Conversion Enhancement with TiOx Compact Layers for ITO-Plastic-Film-Based Low-Tempe-rature-Processed Dye-Sensitized Photoelectrodes. European Journal of Chemical Physics and Physical Chemistry, 15, 1190-1193.
https://doi.org/10.1002/cphc.201301061
|
[36]
|
Shibayama, N., Inoue, Y., Abe, M., Kajiyama, S., Ozawa, H., Miura, H. and Arakawa, H. (2015) Novel Near-Infrared Carboxylated 1, 3-Indandione Sensitizers for Highly Efficient Flexible Dye-Sensitized Solar Cells. Chemical Communications, 51, 12795-12798. https://doi.org/10.1039/C5CC03049H
|
[37]
|
Sun, X., Wang, Y., Li, X., Agren, H., Zhu, W., Tian, H. and Xie, Y. (2014) Cosensitizers for Simultaneous Filling up of both Absorption Valleys of Porphyrins: A Novel Approach for Developing Efficient Panchromatic Dye-Sensitized Solar Cells. The Royal Society of Chemistry, 50, 1-4.
|
[38]
|
Msangi, A., Pogrebnoi, A. and Pogrebnaya, T. (2018) Combination of Natural Dye (Crocetin) and Synthetic Dye (Indoline D205) for DSSCs Application. International Journal of Computational and Theoretical Chemistry, 6, 1-13.
|
[39]
|
Sharma, G.D., Angaridis, P.A., Pipou, S., Zervaki, G.E., Nikolaou, V., Misra, R. and Coutsolelos, A.G. (2015) Efficient Co-Sensitization of Dye-Sensitized Solar Cells by Novel Porphyrin/Triazine Dye and Tertiary Aryl-Amine Organic Dye. Elsevier, 25, 295-307.
|
[40]
|
Nguyen, L.H., Mulmudi, H.K., Sabba, D., Kulkarni, S.A., Batabyal, S.K., Nonomura, K., Gratzel, M. and Mhaisalkar, S.G. (2012) A Selective Co-Sensitization Approach to Increase Photon Conversion Efficiency and Electron Lifetime in Dye-Sensitized Solar Cells. Physical Chemistry Chemical Physics, 14, 16182-16186.
https://doi.org/10.1039/c2cp42959d
|
[41]
|
Xie, Y., Wu, L., Han, L. and Gao, J. (2017) Co-Sensitization by Triarylamine Dyes for Improved Dye-Sensitized Solar Cells. Physical Status Solidi Applications and Materials Science, 214, 1-6. https://doi.org/10.1002/pssa.201600938
|
[42]
|
Pamain, A., Pogrebnaya, T. and King'ondu, C.K. (2014) Natural Dyes for Solar Cell Application: UV-Visible Spectra and Outdoor Photovoltaic Performance. Research Journal in Engineering and Applied Sciences, 3, 332-336.
|
[43]
|
http://www.chemspider.com
|
[44]
|
Lemmon, E., McLinden, M., Friend, D., Linstrom, P. and Mallard, W. (2011) NIST Chemistry WebBook, Nist Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg.
https://webbook.nist.gov/chemistry/
|
[45]
|
Tokarev, K. (2007-2009) OpenThermo v. 1.0 Beta 1 (C).
|
[46]
|
Granovsky, A.A. (1994-2018) Firefly Version 8.8.
http://classic.chem.msu.su/gran/gamess/index.html
|
[47]
|
Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A. and Su, S. (1993) General Atomic and Molecular Electronic Structure System. Journal of Computational Chemistry, 14, 1347-1363. https://doi.org/10.1002/jcc.540141112
|
[48]
|
Zhurko, G. and Zhurko, D. (2015) Chemcraft Graphical Program for Visualization of Computed Results. http://www.chemcraftprog.com/
|
[49]
|
Bode, B.M. and Gordon, M.S. (1998) MacMolPlt: A Graphical User Interface for GAMESS. Journal of Molecular Graphics and Modelling, 16, 133-138.
https://doi.org/10.1016/S1093-3263(99)00002-9
|
[50]
|
Mahkam, M., Kafshboran, H.R. and Nabati, M. (2014) Synthesis and Characterization of Novel Colored Polymers Based on Lawsone Natural Compound. Designed Monomers and Polymers, 17, 784-794.
https://doi.org/10.1080/15685551.2014.918017
|
[51]
|
Dentani, T., Kubota, Y., Funabiki, K., Jin, J., Yoshida, T., Minoura, H., Miura, H. and Matsui, M. (2009) Novel Thiophene-Conjugated Indoline Dyes for Zinc Oxide Solar Cells. New Journal of Chemistry, 33, 93-101.
https://doi.org/10.1039/B808959K
|
[52]
|
Allen, F.H. and Kirby, A.J. (1984) Bond Length and Reactivity. Variable Length of the Carbon-Oxygen Single Bond. Journal of the American Chemical Society, 106, 6197-6200. https://doi.org/10.1021/ja00333a013
|
[53]
|
Sutton, L.E. (1965) Tables of Interatomic Distances and Configuration in Molecules and Ions (Supplement 1956-1959). Chemical Society.
|
[54]
|
Hrmova, M., Varghese, J.N., De Gori, R., Smith, B.J., Driguez, H. and Fincher, G.B. (2001) Catalytic Mechanisms and Reaction Intermediates along the Hydrolytic Pathway of a Plant β-D-Glucan Glucohydrolase. Structure, 9, 1005-1016.
https://doi.org/10.1016/S0969-2126(01)00673-6
|
[55]
|
Makuraza, J., Pogrebnaya, T. and Pogrebnoi, A. (2015) Vibrational and Electronic Spectra of Natural Dyes Constituents for Solar Cell Application: DFT and TDDFT Study. International Journal of Materials Science and Applications, 4, 314-324.
https://doi.org/10.11648/j.ijmsa.20150405.16
|
[56]
|
Liu, Z., Wang, X.-F., Wang, Z., Ojima, H., Hong, Z., Tian, W. and Kido, J. (2013) Indoline-Based Donor Molecule for Efficient Co-Evaporated Organic Photovoltaics. Organic Electronics, 14, 2210-2215. https://doi.org/10.1016/j.orgel.2013.05.029
|
[57]
|
Lin, H., Zhu, S.-G., Chen, P.-Y., Li, K., Li, H.-Z. and Peng, X.-H. (2013) DFT Investigation of a High Energy Density Polynitro Compound, 2,2’-Bis(trinitromethyl)-5,5’-azo-1,2,3,4-tetrazole. Central European Journal of Energetic Materials, 10, 325-338.
|
[58]
|
Wu, C.J., Yang, L.H., Fried, L.E., Quenneville, J. and Martinez, T.J. (2003) Electronic Structure of Solid 1,3,5-triamino-2,4,6-trinitrobenzene under Uniaxial Compression: Possible Role of Pressure-Induced Metallization in Energetic Materials. The American Physical Society, 67, 1-7.
|
[59]
|
Wei, T., Zhu, W., Zhang, X., Li, Y.-F. and Xiao, H. (2009) Molecular Design of 1, 2, 4, 5-Tetrazine-Based High-Energy Density Materials. The Journal of Physical Chemistry A, 113, 9404-9412. https://doi.org/10.1021/jp902295v
|
[60]
|
Badders, N., Wei, C., Aldeeb, A., Rogers, W. and Mannan, M. (2006) Predicting the Impact Sensitivities of Polynitro Compounds Using Quantum Chemical Descriptors. Journal of Energetic Materials, 24, 17-33.
https://doi.org/10.1080/07370650500374326
|
[61]
|
Lungu, J., Oprea, C., Dumbrava, A., Enache, I., Georgescu, A., Radulescu, C., Ionita, I., Cimpoca, G. and Girtu, M. (2010) Heterocyclic Azodyes as Pigments for Dye Sensitized Solar Cells: A Combined Experimental and Theoretical Study. Journal of Optoelectronics and Advanced Materials, 12, 1969-1975.
|
[62]
|
Oprea, C.I., Dumbrav?, A., Enache, I., Lungu, J., Georgescu, A., Moscalu, F., Oprea, C. and G?r?u, M.A. (2011) Role of Energy Level Alignment in Solar Cells Sensitized with a Metal-Free Organic Dye: A Combined Experimental and Theoretical Approach. Physical Status Solidi Applications and Materials Science, 208, 2467-2477.
https://doi.org/10.1002/pssa.201127083
|
[63]
|
Oprea, C.I., Frecu?, B., Minaev, B.F. and G?r?u, M.A. (2011) DFT Study of Electronic Structure and Optical Properties of Some Ru-and Rh-Based Complexes for Dye-Sensitized Solar Cells. Molecular Physics, 109, 2511-2523.
https://doi.org/10.1080/00268976.2011.621454
|
[64]
|
De Angelis, F., Fantacci, S. and Selloni, A. (2008) Alignment of the Dye’s Molecular Levels with the TiO2 Band Edges in Dye-Sensitized Solar Cells: A DFT-TDDFT Study. Nanotechnology, 19, 1-7. https://doi.org/10.1088/0957-4484/19/42/424002
|
[65]
|
Xu, Y. and Schoonen, M.A.A. (2000) The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist, 85, 543-556. https://doi.org/10.2138/am-2000-0416
|
[66]
|
Peter, L.M. (2007) Characterization and Modeling of Dye-Sensitized Solar Cells. American Chemical Society, 111, 6601-6612. https://doi.org/10.1149/1.2731224
|
[67]
|
Lindblad, R. (2014) Electronic Structures and Energy Level Alignment in Mesoscopic Solar Cells. Doctor of Philosophy, Uppsala University, 88.
|