Thermoelectric Power of Cu-Zn Ferrites
Hussain Abd-Elkariem Dawoud
DOI: 10.4236/msa.2011.211210   PDF    HTML     6,667 Downloads   10,884 Views   Citations

Abstract

A series of Cu-Zn mixed ferrites with composition formula Cu1–xZnxFe2O4 is prepared by the double sintering ceramic technique. Thermoelectric power studies are performed over a temperature range of 300 to 800 k by a deferential method. The results showed a negative value for the Seebeck coefficient S for all samples, and all compositions exhibited an n-type semiconductors behavior in the measured range of temperature. The values of charge carrier concentration n and the Fermi energy were determined. The values of n were found to decrease as temperature increased, while Fermi energy directed to more negative values when Zn content is increased. On the basis of these results a mechanism for the conduction in Cu-Zn ferrites is suggested and the properties of the mention compounds were determined.

Share and Cite:

H. Dawoud, "Thermoelectric Power of Cu-Zn Ferrites," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1572-1577. doi: 10.4236/msa.2011.211210.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. K. Roy and J. Bera, “Enhancement of the Magnetic Properties of Ni-Cu-Zn Ferrites with the Substitution of a Small Fraction of Lanthanum for Iron,” Materials Re- search Bulletin, Vol. 42, No. 1, 2007, pp. 77-83. doi:10.1016/j.materresbull.2006.05.009
[2] I. Z. Rahman and T. T. Ahemed, “A Study on Cu Substituted Chemically Processed Ni-Zn-Cu Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 290-291, 2005, pp. 1576-1579. doi:10.1016/j.jmmm.2004.11.250
[3] D. Ravinder, “Thermoelectric Power and Electric Conductivity of Cd—Substituted Copper Ferrite,” Materials Letters, Vol. 44, No. 3-4, 2000, pp. 130-138. doi:10.1016/S0167-577X(00)00015-X
[4] A. Gonchar, V. Andreev, L. Letyuk, A. Shishkanov and V. Maiorov, “Problems of Increasing of Thermostability of Highly Permeable Ni-Zn Ferrites and Relative Materials for Telecommunications,” Journal of Magnetism and Magnetic Materials, Vol. 254-255, 2003, pp. 544-546. doi:10.1016/S0304-8853(02)00860-0
[5] M. C. Dimri, A. K. Verma, S. C. Kashyap, D. C. Dube and O. P. Thakur, “Structural, Dielectric and Magnetic Properties of NiCuZn Ferrite Grown by Citrate Precursor Method,” Materials Science and Engineering: B, Vol. 133, No. 1-3, 2006, pp. 42-48. doi:10.1016/j.mseb.2006.04.043
[6] P. A. Jadhav, R. S. Devan, Y. D. Kolekar and B. K. Chougule, “Structural, Electrical and Magnetic Charac- terizations of Ni-Cu-Zn Ferrite Synthesized by Citrate Precursor Method,” Journal of Physics and Chemistry of Solids, Vol. 70, No. 2, 2009, pp. 396-400. doi:10.1016/j.jpcs.2008.11.019
[7] D. Ravinder, “Thermoelectric Power Studies of Zinc Sub- stituted Copper Ferrite,” Journal of Alloys and Com- pounds, Vol. 291, No. 1-2, 2000, pp. 208-214. doi:10.1016/S0925-8388(99)00287-X
[8] K. V. Kumar and D. Ravinder, “Electrical Transport Properties of Erbium Substituted Ni-Zn Ferrite,” Inter- national Journal of Inorganic Materials, Vol. 3, No. 7, 2001, pp. 661-666. doi:10.1016/S1466-6049(01)00194-5
[9] S. A. Mazen, “Electrical Conductivity and Thermoelectric Power of Cu-Ti Ferrite,” Materials Chemistry and Physics, Vol. 56, No. 2, 1998, pp. 102-107. doi:10.1016/S0254-0584(98)00136-9
[10] S. A. Mazen and A. Elfalaky, “Thermoelectric Power and Electrical Conductivity of Cu-Ti Ferrite,” Journal of Magnetism and Magnetic Materials, Vol. 195, No. 1, 1999, pp. 148-155. doi:10.1016/S0304-8853(98)00348-5
[11] B. L. Patil, S. R. Sawant and S. A. Patil, “Electrical and Magnetic Studies of Ba3Co2Fe23–12xMn12xO4 Hexafer- rites Type,” Physical State Solid (A), Vol. 133, No. 1-2, 1992, p. 147.
[12] P. V. Reddy, V. D. Reddy and D. Ravinder, “Ther- mopower Studies of Lithium-Zinc Mixed Ferrites,” Phy- sical State Solid (A), Vol. 127, No. 2, 1991, pp. 439-450.
[13] R. Manjula, V. R. K. Murthy and J. Sobhandri, “Electric Conduction in Ni-Zn Ferrite,” Journal of Applied Physics, Vol. 59, No. 5, 1986, p. 2929.
[14] H. A. Dawoud and S. K. K. Shaat, “Initial Permeability and Conductivity of Cu-Zn Ferrite,” Islamic University Journal, Vol. 14, No. 1, 2006, pp. 165-182.
[15] C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian and K. Chottopdhyay, “Size Dependent Magnetic Behavior of Noncrystalline Spinel Ferrite,” Journal Materials Science and Engineering A, Vol. 304, 2001, p. 983. doi:10.1016/S0921-5093(00)01611-7
[16] C. C. Wu, S. Krishnan and T. O. Mason, “Thermopower Composition Dependence in Ferrospinel,” Journal of Solid State Chemistry, Vol. 37, No. 2, 1981, pp. 144-150. doi:10.1016/0022-4596(81)90079-7
[17] H. M. Zaki and H. A. Dawoud, “Far Infrared Spectra for Cooper-Zinc Mixed Ferrite,” Physica B: Condensed Matter, Vol. 405, No. 21, 2010, p. 4479. doi:10.1016/j.physb.2010.08.018
[18] F. J. Morin, “Charge Carrier and Mobility of Cu-Ti Fer- rite,” Physical Review, Vol. 93, 1970, p. 433.
[19] A. J. Bosman and C. Crevecoevr, “Electrical Conduction in Li-Doped CoO,” Journal of Physics and Chemistry of Solids, Vol. 30, No. 5, 1969, pp. 1151-1160. doi:10.1016/0022-3697(69)90372-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.