[1]
|
Joe, B. and Lokesh, B.R. (1994) Role of Capsaicin, Curcumin and Dietary n-3 Fatty Acids in Lowering the Generation of Reactive Oxygen Species in Rat Peritoneal Macrophages. Biochimica et Biophysica Acta, 1224, 255-263. https://doi.org/10.1016/0167-4889(94)90198-8
|
[2]
|
Joe, B., Vijaykumar, M. and Lokesh, B.R. (2004) Biological Properties of Curcumin-Cellular and Molecular Mechanisms of Action. Critical Reviews in Food Science and Nutrition, 44, 97-111. https://doi.org/10.1080/10408690490424702
|
[3]
|
Mahady, G.B., Pendland, S.L., Yun, G. and Lu, Z.Z. (2002) Turmeric (Curcuma longa) and Curcumin Inhibit the Growth of Helicobacter Pylori, a Group 1 Carcinogen. Anticancer Research, 22, 4179-4181.
|
[4]
|
Reddy, R.C., Vatsala, P.G., Keshamouni, V.G., Padmanaban, G. and Rangarajan, P.N. (2005) Curcumin for Malaria Therapy. Biochemical and Biophysical Research Communications, 326, 472-474. https://doi.org/10.1016/j.bbrc.2004.11.051
|
[5]
|
Wright, L.E., Frye, J.B., Gorti, B., Timmermann, B.N. and Funk, J.L. (2013) Bioactivity of Turmeric-Derived Curcuminoids and Related Metabolites in Breast Cancer. Current Pharmaceutical Design, 19, 6218-6125. https://doi.org/10.2174/1381612811319340013
|
[6]
|
Abdel-Daim, M.M. and Abdou, R.H. (2015) Protective Effects of Diallyl Sulfide and Curcumin Separately against Thallium-Induced Toxicity in Rats. Cell Journal, 17, 379-388.
|
[7]
|
Kang, J., Chen, J., Shi, Y., Jia, J. and Zhang, Y. (2005) Curcumin-Induced Histone Hypoacetylation: The Role of Reactive Oxygen Species. Biochemical Pharmacology, 69, 1205-1213. https://doi.org/10.1016/j.bcp.2005.01.014
|
[8]
|
Reddy, A.C. and Lokesh, B.R. (1994) Effect of Dietary Turmeric (Curcuma longa) on Iron-Induced Lipid Peroxidation in the Rat Liver. Food and Chemical Toxicology, 32, 279-283. https://doi.org/10.1016/0278-6915(94)90201-1
|
[9]
|
Jeong, G.S., Oh, G.S., Pae, H.O., Jeong, S.O., Kim, Y.C., Shin, M.K., et al. (2006) Comparative Effects of Curcuminoids on Endothelial Heme Oxygenase-1 Expression: Ortho-Methoxy Groups Are Essential to Enhance Heme Oxygenase Activity and Protection. Experimental & Molecular Medicine, 38, 393-400. https://doi.org/10.1038/emm.2006.46
|
[10]
|
Reuter, S., Gupta, S.C., Chaturvedi, M.M. and Aggarwal, B.B. (2010) Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radical Biology & Medicine, 49, 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
|
[11]
|
Sethi, G., Sung, B. and Aggarwal, B.B. (2008) Nuclear Factor-κB Activation: From Bench to Bedside. Experimental Biology and Medicine (Maywood), 233, 21-31. https://doi.org/10.3181/0707-MR-196
|
[12]
|
Anthwal, A., Thakur, B.K., Rawat, M.S., Rawat, D.S., Tyagi, A.K. and Aggarwal, B.B. (2014) Synthesis, Characterization and in Vitro Anticancer Activity of C-5 Curcumin Analogues with Potential to Inhibit TNF-Alpha-Induced NF-KappaB Activation. BioMed Research International, 2014, Article ID: 524161. https://doi.org/10.1155/2014/524161
|
[13]
|
Cho, J.W., Lee, K.S. and Kim, C.W. (2007) Curcumin Attenuates the Expression of IL-1beta, IL-6, and TNF-Alpha as Well as Cyclin E in TNF-Alpha-Treated HaCaT Cells; NF-κB and MAPKs as Potential Upstream Targets. International Journal of Molecular Medicine, 19, 469-474.
|
[14]
|
Li, R., Wang, Y., Liu, Y., Chen, Q., Fu, W., Wang, H., et al. (2013) Curcumin Inhibits Transforming Growth Factor-beta1-Induced EMT via PPARγ Pathway, Not Smad Pathway in Renal Tubular Epithelial Cells. PLoS ONE, 8, e58848. https://doi.org/10.1371/journal.pone.0058848
|
[15]
|
Ruiz de Porras, V., Bystrup, S., Martinez-Cardus, A., Pluvinet, R., Sumoy, L., Howells, L., et al. (2016) Curcumin Mediates Oxaliplatin-Acquired Resistance Reversion in Colorectal Cancer Cell Lines through Modulation of CXC-Chemokine/NF-κB Signalling Pathway. Scientific Reports, 6, Article ID: 24675. https://doi.org/10.1038/srep24675
|
[16]
|
Paulino, N., Paulino, A.S., Diniz, S.N., de Mendonca, S., Goncalves, I.D., Faiao Flores, F., et al. (2016) Evaluation of the Anti-Inflammatory Action of Curcumin Analog (DM1): Effect on iNOS and COX-2 Gene Expression and Autophagy Pathways. Bioorganic & Medicinal Chemistry, 24, 1927-1935. https://doi.org/10.1016/j.bmc.2016.03.024
|
[17]
|
Nieto, C.I., Cabildo, M.P., Cornago, M.P., Sanz, D., Claramunt, R.M., Torralba, M.C., et al. (2015) Fluorination Effects on NOS Inhibitory Activity of Pyrazoles Related to Curcumin. Molecules, 20, 15643-15665. https://doi.org/10.3390/molecules200915643
|
[18]
|
Huang, C.Z., Huang, W.Z., Zhang, G. and Tang, D.L. (2013) In Vivo Study on the Effects of Curcumin on the Expression Profiles of Anti-Tumour Genes (VEGF, CyclinD1 and CDK4) in Liver of Rats Injected with DEN. Molecular Biology Reports, 40, 5825-5831. https://doi.org/10.1007/s11033-013-2688-y
|
[19]
|
Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C. and Ramirez-Tortosa, M. (2016) Curcumin and Health. Molecules, 21, 264. https://doi.org/10.3390/molecules21030264
|
[20]
|
Pari, L., Tewas, D. and Eckel, J. (2008) Role of Curcumin in Health and Disease. Archives of Physiology and Biochemistry, 114, 127-149. https://doi.org/10.1080/13813450802033958
|
[21]
|
Tenero, L., Piazza, M., Zanoni, L., Bodini, A., Peroni, D. and Piacentini, G.L. (2016) Antioxidant Supplementation and Exhaled Nitric Oxide in Children with Asthma. Allergy & Asthma Proceedings, 37, 8-13. https://doi.org/10.2500/aap.2016.37.3920
|
[22]
|
Ahn, J.K., Kim, S., Hwang, J., Kim, J., Lee, Y.S., Koh, E.M., et al. (2015) Metabolomic Elucidation of the Effects of Curcumin on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. PLoS ONE, 10, e0145539. https://doi.org/10.1371/journal.pone.0145539
|
[23]
|
Lang, A., Salomon, N., Wu, J.C., Kopylov, U., Lahat, A., Har-Noy, O., et al. (2015) Curcumin in Combination with Mesalamine Induces Remission in Patients with Mild-to-Moderate Ulcerative Colitis in a Randomized Controlled Trial. Clinical Gastroenterology and Hepatology, 13, 1444-1449e1.
|
[24]
|
Rainey-Smith, S.R., Brown, B.M., Sohrabi, H.R., Shah, T., Goozee, K.G., Gupta, V.B., et al. (2016) Curcumin and Cognition: A Randomised, Placebo-Controlled, Double-Blind Study of Community-Dwelling Older Adults. British Journal of Nutrition, 115, 2106-2113. https://doi.org/10.1017/S0007114516001203
|
[25]
|
Yu, J.J., Pei, L.B., Zhang, Y., Wen, Z.Y. and Yang, J.L. (2015) Chronic Supplementation of Curcumin Enhances the Efficacy of Antidepressants in Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Journal of Clinical Psychopharmacology, 35, 406-410. https://doi.org/10.1097/JCP.0000000000000352
|
[26]
|
Mahammedi, H., Planchat, E., Pouget, M., Durando, X., Cure, H., Guy, L., et al. (2016) The New Combination Docetaxel, Prednisone and Curcumin in Patients with Castration-Resistant Prostate Cancer: A Pilot Phase II Study. Oncology, 90, 69-78. https://doi.org/10.1159/000441148
|
[27]
|
Yang, H., Xu, W., Zhou, Z., Liu, J., Li, X., Chen, L., et al. (2015) Curcumin Attenuates Urinary Excretion of Albumin in Type II Diabetic Patients with Enhancing Nuclear Factor Erythroid-Derived 2-Like 2 (Nrf2) System and Repressing Inflammatory Signaling Efficacies. Experimental and Clinical Endocrinology & Diabetes, 123, 360-367. https://doi.org/10.1055/s-0035-1545345
|
[28]
|
Panahi, Y., Rahimnia, A.R., Sharafi, M., Alishiri, G., Saburi, A. and Sahebkar, A. (2014) Curcuminoid Treatment for Knee Osteoarthritis: A Randomized Double-Blind Placebo-Controlled Trial. Phytotherapy Research, 28, 1625-1631. https://doi.org/10.1002/ptr.5174
|
[29]
|
Akazawa, N., Choi, Y., Miyaki, A., Tanabe, Y., Sugawara, J., Ajisaka, R., et al. (2012) Curcumin Ingestion and Exercise Training Improve Vascular Endothelial Function in Postmenopausal Women. Nutrition Research, 32, 795-799. https://doi.org/10.1016/j.nutres.2012.09.002
|
[30]
|
IOM (2015) Beyond Mayalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. The National Academies Press, Washington DC.
|
[31]
|
Twisk, F.N. (2014) The Status of and Future Research into Myalgic Encephalomyelitis and Chronic Fatigue Syndrome: The Need of Accurate Diagnosis, Objective Assessment, and Acknowledging Biological and Clinical Subgroups. Frontiers in Physiology, 5, 109. https://doi.org/10.3389/fphys.2014.00109
|
[32]
|
Jason, L.A. and Richman, J.A. (2008) How Science Can Stigmatize: The Case of Chronic Fatigue Syndrome. Journal of Chronic Fatigue Syndrome, 14, 85-103. https://doi.org/10.1080/10573320802092146
|
[33]
|
Morris, G., Berk, M., Walder, K. and Maes, M. (2015) Central Pathways Causing Fatigue in Neuro-Inflammatory and Autoimmune Illnesses. BMC Medicine, 13, 28. https://doi.org/10.1186/s12916-014-0259-2
|
[34]
|
Nijs, J., Nees, A., Paul, L., De Kooning, M., Ickmans, K., Meeus, M., et al. (2014) Altered Immune Response to Exercise in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Systematic Literature Review. Exercise Immunology Review, 20, 94-116.
|
[35]
|
Maes, M., Bosmans, E. and Kubera, M. (2015) Increased Expression of Activation Antigens on CD8+ T Lymphocytes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Inverse Associations with Lowered CD19+ Expression and CD4+/CD8+ Ratio, But No Associations with (auto)immune, Leaky Gut, Oxidative and Nitrosative Stress Biomarkers. Neuro Enocrinology Letters, 36, 439-446.
|
[36]
|
Jason, L., Sorenson, M., Sebally, K., Alkazemi, D., Lerch, A., Porter, N., et al. (2011) Increased HDAC in Association with Decreased Plasma Cortisol in Older Adults with Chronic Fatigue Syndrome. Brain, Behavior, and Immunity, 25, 1544-1547. https://doi.org/10.1016/j.bbi.2011.04.007
|
[37]
|
Morris, G., Anderson, G., Dean, O., Berk, M., Galecki, P., Martin-Subero, M., et al. (2014) The Glutathione System: A New Drug Target in Neuroimmune Disorders. Molecular Neurobiology, 50, 1059-1084. https://doi.org/10.1007/s12035-014-8705-x
|
[38]
|
Blundell, S., Ray, K.K., Buckland, M. and White, P.D. (2015) Chronic Fatigue Syndrome and Circulating Cytokines: A Systematic Review. Brain, Behavior, and Immunity, 50, 186-195. https://doi.org/10.1016/j.bbi.2015.07.004
|
[39]
|
Russell, L., Broderick, G., Taylor, R., Fernandes, H., Harvey, J., Barnes, Z., et al. (2016) Illness Progression in Chronic Fatigue Syndrome: A Shifting Immune Baseline. BMC Immunology, 17, 3. https://doi.org/10.1186/s12865-016-0142-3
|
[40]
|
Landi, A., Broadhurst, D., Vernon, S.D., Tyrrell, D.L. and Houghton, M. (2016) Reductions in Circulating Levels of IL-16, IL-7 and VEGF-A in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Cytokine, 78, 27-36. https://doi.org/10.1016/j.cyto.2015.11.018
|
[41]
|
Hornig, M., Montoya, J.G., Klimas, N.G., Levine, S., Felsenstein, D., Bateman, L., et al. (2015) Distinct Plasma Immune Signatures in ME/CFS Are Present Early in the Course of Illness. Science Advances, 1, e1400121. https://doi.org/10.1126/sciadv.1400121
|
[42]
|
Hornig, M., Montoya, J.G., Klimas, N.G., Levine, S., Felsenstein, D., Bateman, L., et al. (2016) Distinct Plasma Ebrospinal Fluid in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Molecular Psychiatry, 21, 261-269. https://doi.org/10.1038/mp.2015.29
|
[43]
|
Gupta, A., Vij, G., Sharma, S., Tirkey, N., Rishi, P. and Chopra, K. (2009) Curcumin, a Polyphenolic Antioxidant, Attenuates Chronic Fatigue Syndrome in Murine Water Immersion Stress Model. Immunobiology, 214, 33-39. https://doi.org/10.1016/j.imbio.2008.04.003
|
[44]
|
Fukuda, K., Straus, S.E., Hickie, I., Sharpe, M.C., Dobbins, J.G. and Komaroff, A. (1994) The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study. International Chronic Fatigue Syndrome Study Group. Annals of Internal Medicine, 121, 953-959. https://doi.org/10.7326/0003-4819-121-12-199412150-00009
|
[45]
|
Carruthers, B.M., van de Sande, M.I., DE Meirleir, K.L., Klimas, N.G., Broderick, G., Mitchell, T., et al. (2011) Myalgic Encephalomyelitis: International Consensus Criteria. Journal of Internal Medicine, 270, 327-338. https://doi.org/10.1111/j.1365-2796.2011.02428.x
|
[46]
|
Wagner, D., Nisenbaum, R., Heim, C., Jones, J.F., Unger, E.R. and Reeves, W.C. (2005) Psychometric Properties of the CDC Symptom Inventory for Assessment of Chronic Fatigue Syndrome. Population Health Metrics, 3, 8. https://doi.org/10.1186/1478-7954-3-8
|
[47]
|
Vermeulen, R.C. (2006) Translation and Validation of the Dutch Language Version of the CDC Symptom Inventory for Assessment of Chronic Fatigue Syndrome (CFS). Population Health Metrics, 4, 12. https://doi.org/10.1186/1478-7954-4-12
|
[48]
|
Morris, G., Berk, M., Galecki, P., Walder, K. and Maes, M. (2016) The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases. Molecular Neurobiology, 53, 1195-219. https://doi.org/10.1007/s12035-015-9090-9
|
[49]
|
Nakatomi, Y., Mizuno, K., Ishii, A., Wada, Y., Tanaka, M., Tazawa, S., et al. (2014) Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. Journal of Nuclear Medicine, 55, 945-950. https://doi.org/10.2967/jnumed.113.131045
|
[50]
|
Ryu, E.K., Choe, Y.S., Lee, K.H., Choi, Y. and Kim, B.T. (2006) Curcumin and Dehydrozingerone Derivatives: Synthesis, Radiolabeling, and Evaluation for Beta-Amyloid Plaque Imaging. Journal of Medicinal Chemistry, 49, 6111-6119. https://doi.org/10.1021/jm0607193
|
[51]
|
Prasad, S., Tyagi, A.K. and Aggarwal, B.B. (2014) Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice. Cancer Research and Treatment, 46, 2-18. https://doi.org/10.4143/crt.2014.46.1.2
|
[52]
|
Marczylo, T.H., Verschoyle, R.D., Cooke, D.N., Morazzoni, P., Steward, W.P. and Gescher, A.J. (2007) Comparison of Systemic Availability of Curcumin with That of Curcumin Formulated with Phosphatidylcholine. Cancer Chemotherapy and Pharmacology, 60, 171-177. https://doi.org/10.1007/s00280-006-0355-x
|
[53]
|
Gupta, N.K. and Dixit, V.K. (2011) Bioavailability Enhancement of Curcumin by Complexation with Phosphatidyl Choline. Journal of Pharmaceutical Sciences, 100, 1987-1995. https://doi.org/10.1002/jps.22393
|
[54]
|
Maes, M., Twisk, F.N. and Johnson, C. (2012) Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS), and Chronic Fatigue (CF) Are Distinguished Accurately: Results of Supervised Learning Techniques Applied on Clinical and Inflammatory Data. Psychiatry Research, 200, 754-760. https://doi.org/10.1016/j.psychres.2012.03.031
|
[55]
|
Jason, L.A., Brown, A., Evans, M., Sunnquist, M. and Newton, J.L. (2013) Contrasting Chronic Fatigue Syndrome versus Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Fatigue, 1, 168-183. https://doi.org/10.1080/21641846.2013.774556
|
[56]
|
Jason, L.A., McManimen, S., Sunnquist, M., Brown, A., Furst, J., Newton, J.L., et al. (2016) Case Definitions Integrating Empiric and Consensus Perspectives. Fatigue, 4, 1-23. https://doi.org/10.1080/21641846.2015.1124520
|
[57]
|
Jason, L.A., Evans, M., Brown, A., Sunnquist, M. and Newton, J.L. (2015) Chronic Fatigue Syndrome versus Sudden Onset Myalgic Encephalomyelitis. Journal of Prevention & Intervention in the Community, 43, 62-77. https://doi.org/10.1080/10852352.2014.973233
|
[58]
|
Brown, M.M. and Jason, L.A. (2007) Functioning in Individuals with Chronic Fatigue Syndrome: Increased Impairment with Co-Occurring Multiple Chemical Sensitivity and Fibromyalgia. Dynamic Medicine, 6, 9. https://doi.org/10.1186/1476-5918-6-9
|