[1]
|
Kaur, P., Singh, M. and Josan, G.S. (2015) Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector. Procedia Computer Science, 57, 500-508. https://doi.org/10.1016/j.procs.2015.07.372
|
[2]
|
Zierk, J., Hirschmann, J., Toddenroth, D., Prokosch, H.U., Rauh, M. and Metzler, M. (2016) A Bioinformatics Approach to Pediatric Hematology Reference Intervals. Klinische Pädiatrie, 228, A45. https://doi.org/10.1055/s-0036-1582522
|
[3]
|
Salvithal, N.N. and Kulkarni, R.B. (2013) Evaluating Performance of Data Mining Classification Algorithm in Weka.
|
[4]
|
Vaithiyanathan, V., et al. (2013) Comparison of Different Classification Techniques Using Different Datasets. International Journal of Advances in Engineering & Technology, 6, 2.
|
[5]
|
Narendra, S., Bajpai, A. and Litoriya, R. (2012) Comparison the Various Clustering Algorithm of Weka Tools. International Journal of Emerging Technology and Advanced Engineering, 2, 73-80.
|
[6]
|
Singhal, S. and Jena, M. (2013) A Study on WEKA Tool for Data Preprocessing. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2.
|
[7]
|
Khan, S.A., Epstein, J.H., Olival, K.J., Hassan, M.M., Hossain, M.B., Rahman, K.B.M.A., Elahi, M.F., et al. (2011) Hematology and Serum Chemistry Reference Values of Stray Dogs in Bangladesh.
|
[8]
|
Shouval, R., Bondi, O., Mishan, H., Shimoni, A., Unger, R. and Nagler, A. (2014) Application of Machine Learning Algorithms for Clinical Predictive Modeling: A Data-Mining Approach in SCT. Bone Marrow Transplantation, 49, 332-337;
https://doi.org/10.1038/bmt.2013.146
|
[9]
|
Papaemmanuil, E., Gerstung, M., Bullinger, L., Gaidzik, V., Paschka, P., Roberts, N., Potter, N.E., Heuser, M., Thol, F., Bolli, N., Gundem, G., Van Loo, P., Martincorena, I., Ganly, P., Mudie, L., McLaren, S., O’Meara, S., Raine, K., Jones, D., Teague, J., Butler, A.P., Greaves, M.E., Ganser, A., Döhner, K., Schlenk, R., Döhner, H. and Campbell, P.J. (2016) Genomic Classification and Prognosis in Acute Myeloid Leukemia. The New England Journal of Medicine, 374, 2209-2221.
https://doi.org/10.1056/NEJMoa1516192
|
[10]
|
Dankowski, T. and Ziegler, A. (2016) Calibrating Random Forests for Probability Estimation. John Wiley & Sons Ltd., Hoboken.
|
[11]
|
Zhang, W., Ma, D. and Wei, Y. (2014) Medical Diagnosis Data Mining Based on Improved Apriori Algorithm. Journal of Networks, 9, 1339-1345.
https://doi.org/10.4304/jnw.9.5.1339-1345
|
[12]
|
Chung, H.J., Park, C.H., Han, M.R., Lee, S., Ohn, J.H., Kim, J. and Kim, J.H. (2005) ArrayXPath II: Mapping and Visualizing Micro-Array Gene-Expression Data with High Dimension. Nucleic Acids Research, 33, W621-W626.
https://doi.org/10.1093/nar/gki450
|
[13]
|
Nookala, G.K.M., Orsu, N., Pottumuthu, B.K. and Mudunuri, S.B. (2013) Performance Analysis and Evaluation of Different Data Mining Algorithms Used for Cancer Classification. International Journal of Advanced Research in Artificial Intelligence, 2, 49-55.
|
[14]
|
Raviya, K.H. and Gajjar, B. (2013) Performance Evaluation of Different Data Mining Classification Algorithm using WEKA. Indian Journal of Research, 2, 19-21.
|
[15]
|
Saichanma, S., Chulsomlee, S., Thangrua, N., Pongsuchart, P. and Sanmun, D. (2014) The Observation Report of Red Blood Cell Morphology in Thailand Teenager by using Data Mining Technique. Advances in Hematology, 2014, Article ID: 493706.
|
[16]
|
Othman, B., Fauzi, M. and Shan Yau, T.M. (2007) Comparison of Different Classification Techniques using WEKA for Breast Cancer. 3rd Kuala Lumpur International Conference on Biomedical Engineering, Kuala Lumpur, 11-14 December 2006, 520-523.
|
[17]
|
Elshami, E.H. and Alhalees, A.M. (2012) Automated Diagnosis of Thalassemia Based on Data Mining Classifiers. In: The International Conference on Informatics and Applications, The Society of Digital Information and Wireless Communication, 440-445.
|
[18]
|
Saxena, P. and Lehri, S. (2013) Analysis of Various Clustering Algorithms of Data Mining on Health Informatics. International Journal of Computer & Communication Technology, 6, 108-112.
|
[19]
|
Vijayarani, S. and Muthulakshmi, M. (2013) Comparative Analysis of Bayes and Lazy Classification Algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 2, 3118-3124.
|
[20]
|
Satish Kumar, D., Saeb, A.T.M. and Al Rubeaan, K. (2013) Comparative Analysis of Data Mining Tools and Classification Techniques using WEKA in Medical Bioinformatics. Computer Engineering and Intelligent Systems, 4, 28-38.
|
[21]
|
Pandey, R., Guru, R.K. and Mount, D.W. (2004) Pathway Miner: Extracting Gene Association Networks from Molecular Pathways for Classifying and Predicting the Biological Significance of Gene Expression Microarray Data. Bioinformatics, 20, 2156-2158. https://doi.org/10.1093/bioinformatics/bth215
|
[22]
|
Wahbeh, A.H., et al. (2011) A Comparison Study between Data Mining Tools over Some Classification Methods. International Journal of Advanced Computer Science and Applications, 18-26.
|
[23]
|
Solanki, A.V. (2014) Data Mining Techniques using WEKA Classification for Sickle Cell Disease. International Journal of Computer Science and Information Technologies, 5, 5857-5860.
|
[24]
|
Sharma, T., Sharma, A. and Mansotra, V. (2016) Performance Analysis of Data Mining Classification Techniques on Public Health Care Data. International Journal of Innovative Research in Computer and Communication Engineering, 4, 11381-11386.
|
[25]
|
Alaa, M. and Shurrab, A.H. (2017) Blood Tumor Prediction using Data Mining Techniques. Health Informatics—An International Journal, 6, 23-30.
|
[26]
|
Alkrimi, J.A., Jalab, H.A., George, L.E., Ahmad, A.R., Suliman, A. and Al-Jashamy, K. (2015) Comparative Study using Weka for Red Blood Cells Classification. International Journal of Medical, Health, Pharmaceutical and Biomedical Engineering, 9, 19-22.
|
[27]
|
Rajesh, K. and Sangeetha, V. (2012) Application of Data Mining Methods and Techniques for Diabetes Diagnosis. International Journal of Engineering and Innovative Technology, 2, 224-229.
|
[28]
|
Hasani, M. and Hanani, A. (2017) Automated Diagnosis of Iron Deficiency Anemia and Thalassemia by Data Mining Techniques. International Journal of Computer Science and Network Security, 17, 326.
|
[29]
|
Jagtap, S.B. and Kodge, B.G. (2013) Census Data Mining and Data Analysis using WEKA. International Conference in Emerging Trends in Science, Technology and Management, Singapore.
|