[1]
|
FAO (2006) World Agriculture: Towards 2030/2050. Prospects for Food, Nutrition, and Major Commodity Groups. Food and Agricultural Organisation, Global Perspectives Study Unit, Rome.
|
[2]
|
Godfray, H.C.I. and Garnett, T. (2014) Food Security and Sustainable Intensification. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20120273. https://doi.org/10.1098/rstb.2012.0273
|
[3]
|
Sandhu, H., Wratten, S.D., Costanza, R., Pretty, J., Porter, J.R. and Regenold, J. (2015) Significance and Value of Non-Traded Ecosystem Services on Farmland. Peer Journal, 3, e762. https://doi.org/10.7717/peerj.762
|
[4]
|
Sparks, T.C. and Nauen, R. (2015) IRAC: Mode of Action Classification and Insecticide Resistance Management. Pesticide Biochemistry and Physiology, 121, 122-128.
https://doi.org/10.1016/j.pestbp.2014.11.014
|
[5]
|
Tscharntke, T., Klein, A.M. Kruess, A., Steffan-Dewenter, I. and Thies, C. (2005) Landscape Perspectives on Agricultural Intensification and Biodiversity—Ecosystem Service Management. Ecology Letters, 8, 857-874.
https://doi.org/10.1111/j.1461-0248.2005.00782.x
|
[6]
|
Pimentel, D. (2017) Pest Control in World Agriculture. Encyclopedia of Life Support Systems (EOLSS), 2.
|
[7]
|
Pimentel, D., Lach, L., Zuniga, R. and Morrison, D. (2000) Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience, 50, 53-65. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
|
[8]
|
Pywell, R.F., Heard, M.S., Woodcock, B.A., et al. (2015) Wildlife Friendly Farming Increases Crop Yield: Evidence for Ecological Intensification. Proceedings of the Royal Society B, 282, 2015-1740. https://doi.org/10.1098/rspb.2015.1740
|
[9]
|
Daily, G.C. (1997) What Are Ecosystem Services? In: Daily, G., Ed., Natures Services: Societal Dependence on Natural Ecosystems. Island Press, Washington DC, 1-10.
|
[10]
|
Fincher, G.T., Monson, W.G., and Burton G.W. (1981) Effects of Cattle Faeces Rapidly Buried by Dung Beetles on Yield and Quality of Coastal Bermudagrass. Agronomy Journal, 73, 775-779.
https://doi.org/10.2134/agronj1981.00021962007300050007x
|
[11]
|
De Groot, R.S., Wilson. M.A. and Boumans, R.M.J. (2002) A Typology for the Classification, Description and Valuation of Ecosystem Functions, Goods and Services. Ecological Economics, 41, 393-408.
https://doi.org/10.1016/S0921-8009(02)00089-7
|
[12]
|
Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S. and Favila, M.E. (2008) Ecological Functions and Ecosystem Services Provided by Scarabaeinae Dung Beetles. Biological Conservation, 141, 1461-1474.
https://doi.org/10.1016/j.biocon.2008.04.011
|
[13]
|
Gabriel, D. and Tscharntke, T. (2006) Insect Pollinated Plants Benefit from Organic Farming. Agriculture Ecosystems & Environment, 118, 43-48.
https://doi.org/10.1016/j.agee.2006.04.005
|
[14]
|
Slade, E.M., Riutta, T., Roslin, T. and Tuomisto, H.L. (2016) The Role of Dung Beetles in Reducing Greenhouse Gas Emissions from Cattle Farming. Scientific Reports, 6, Article No. 18140.
|
[15]
|
Landis, D.A., Wratten, S.D. and Gurr, G.M. (2000) Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture. Annual Review of Entomology, 45, 175-201. https://doi.org/10.1146/annurev.ento.45.1.175
|
[16]
|
Brewer, M.J. and Elliott, N.C. (2004) Biological Control of Cereal Aphids in North America and Mediating Effects of Host Plant and Habitat Manipulations. Annual Review of Entomology, 49, 219-242.
https://doi.org/10.1146/annurev.ento.49.061802.123149
|
[17]
|
Bell, J.R., Traugott, M., Sunderland, K.D., Skirvin D.J., Mead, A., Kravar-Garde, L., Reynolds, K., Fenion, J.S. and Symondson, W.O.C. (2008) Beneficial Links for the Control of Aphids: The Effects of Compost Applications on Predators and Prey. Journal of Applied Ecology, 45, 1266-1273.
https://doi.org/10.1111/j.1365-2664.2008.01479.x
|
[18]
|
Lonsdorf, E., Kremen, C., Ricketts, T., Winfree, R., Williams, N. and Greenleaf, S. (2009) Modelling Pollination Services across Agricultural Landscapes. Annals of Botany, 103, 1589-1600. https://doi.org/10.1093/aob/mcp069
|
[19]
|
Hoehn, P., Tscharntke, T., Tylianakis, J.M. and Steffan-Dewenter, I. (2008) Functional Group Diversity of Bee Pollinators Increases Crop Yield. Proceedings of the Royal Society B: Biological Sciences, 275, 2283-2291.
https://doi.org/10.1098/rspb.2008.0405
|
[20]
|
Robertson, G.P. and Swinton, S.M. (2005) Reconciling Agricultural Productivity and Environmental Integrity: A Grand Challenge for Agriculture. Frontiers in Ecology and the Environment, 3, 38-46.
https://doi.org/10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2
|
[21]
|
Altieri, M.A. (1991) Increasing Biodiversity to Improve Insect Pest Management in Agro-Ecosystems. In: Hawksworth, D., Ed., The Biodiversity of Micro-Organisms and Invertebrates: Its Role in Sustainable Agriculture, CAB International, Wallingford, UK, 165-182.
|
[22]
|
May, R.M. (1988) How Many Species Are There on Earth? Science, 241, 1441-1449.
https://doi.org/10.1126/science.241.4872.1441
|
[23]
|
Dirzo, R. and Raven, P.H. (2003) Global State of Biodiversity and Loss. Annual Review of Environment and Resources, 28, 137-167.
https://doi.org/10.1126/science.241.4872.1441
|
[24]
|
Woodcock, B.A., Harrower, C., Redhead, J., Edwards, M., Vanbergen, A.J., Heard, M.S., Roy, D.B. and Pywell, R.F. (2014) National Patterns of Functional Diversity and Redundancy in Predatory Ground Beetles and Bees Associated with Key UK Arable Crops. Journal of Applied Ecology, 51, 142-151.
https://doi.org/10.1111/1365-2664.12171
|
[25]
|
Straub, C.S., Finke, D.L. and Snyder, W.E. (2008) Are the Conservation of Natural Enemy Biodiversity and Biological Control Compatible Goals? Biological Control, 45, 225-237. https://doi.org/10.1016/j.biocontrol.2007.05.013
|
[26]
|
Volker, H.W.R., Rasmussen, N.L., Dibble, C.J. and Van Allen, B.G. (2014) Resolving the Roles of Body Size and Species Identity in Driving Functional Diversity. Proceedings of the Royal Society B: Biological Sciences, 281, 2013-3203.
|
[27]
|
Rudolf, V.H.W. and Rasmussen, N.L. (2013) Population Structure Determines Functional Differences among Species and Ecosystem Processes. Nature Communications, 4, Article No. 2318. https://doi.org/10.1016/j.biocontrol.2007.05.013
|
[28]
|
Woodward, G., Blanchard, J., Lauridsen, R.B., Edwards, F.K., Jones, J.I., Figueroa, D., Warren, P.H., Petchey, O.L. and Guy, W. (2010) Individual-Based Food Webs: Species Identity, Body Size and Sampling Effects. Advances in Ecological Research, 43, 211-266. https://doi.org/10.1016/B978-0-12-385005-8.00006-X
|
[29]
|
Gilljam, D., Edwards, F.K., Thierry, A., et al. (2011) Seeing Double: Size-Based and Taxonomic Views of Food Web Structure. Advances in Ecological Research, 45, 67-133. https://doi.org/10.1016/B978-0-12-386475-8.00003-4
|
[30]
|
Kim, K.C. (1993) Biodiversity, Conservation and Inventory: Why Insects Matter. Biodiversity & Conservation, 2, 191-214. https://doi.org/10.1007/BF00056668
|
[31]
|
Samways, M.J. (1993) Insects in Biodiversity Conservation: Some Perspectives and Directives. Biodiversity & Conservation, 2, 258-282.
https://doi.org/10.1007/BF00056672
|
[32]
|
Stork, N.E., McBroom, J., Gely, C. and Hamilton, A.J. (2015) New Approaches Narrow Global Species Estimates for Beedtles, Insects, and Terrestrial Arthropods. Proceedings of the National Academy of Sciences of the United States of America, 112, 7519-7523. https://doi.org/10.1073/pnas.1502408112
|
[33]
|
Zhang, Z.Q. (2011) Animal Biodiversity: An Introduction to Higher-Level Classification and Taxonomic Richness. Zootaxa, 3148, 7-12.
|
[34]
|
Samways, M.J. (2005) Insect Diversity Conservation. Cambridge University Press, New York, 25-29. https://doi.org/10.1017/CBO9780511614163
|
[35]
|
Dicke, M. (2017) Ecosystem Services of Insects. In: Van Huis, A. and Tomberlin, J.K., Eds., Insects as Food and Feed: From Production to Consumption, Wageningen Academic Publishers, Wageningen, The Netherlands, 61-76.
|
[36]
|
Farrell, B.D. (1998) “Inordinate Fondness” Explained: Why Are There So Many Beetles? Science, 281, 555-559. https://doi.org/10.1126/science.281.5376.555
|
[37]
|
Hunt, T., Bergsten, J., et al. (2007) A Comprehensive Phylogeny of Beetles Reveals the Evolutionary Origins of a Superradiation. Science, 318, 1913-1916.
https://doi.org/10.1126/science.1146954
|
[38]
|
Naeem, S., Duffy, J.E. and Zavaleta, E. (2012) The Functions of Biological Diversity in an Age of Extinction. Science, 336, 1401-1406.
https://doi.org/10.1126/science.1215855
|
[39]
|
Gullan, P.J. and Cranston, P.S. (2010) The Insects: An Outline of Entomology. Blackwell Publishing, Hoboken, NJ, 584 p.
|
[40]
|
Mattson, W.J. and Addy, N.D. (1975) Phytophagous Insects as Regulators of Forest Primary Production. Science, 190, 515-522.
https://doi.org/10.1126/science.190.4214.515
|
[41]
|
Belovsky, G.E. and Slade, J.B. (2000) Insect Herbivory Accelerates Nutrient Cycling and Increases Plant Production. Proceedings of the National Academy of Sciences of the United States of America, 97, 14412-14417.
https://doi.org/10.1073/pnas.250483797
|
[42]
|
Hunter, M.D. (2001) Insect Population Dynamics Meets Ecosystem Ecology: Effects of Herbivory on Soil Nutrient Dynamics. Agricultural and Forest Entomology, 3, 77-84. https://doi.org/10.1046/j.1461-9563.2001.00100.x
|
[43]
|
Metcalfe, D.B., Asner, G.P., Martin, R.E., Silva Espejo, J.E., Huaraca Huasco, W., Farfan Amezquita, F.F., Carranza-Jimenez, L., Galiano Cabrera, D.F., Durand Baca, L., Sinca, F., et al. (2014) Herbivory Makes Major Contributions to Ecosystem Carbon and Nutrient Cycling in Tropical Forests. Ecology Letters, 17, 324-332.
https://doi.org/10.1111/ele.12233
|
[44]
|
Schoonhoven, L.M., Van Loon, J.J.A. and Dicke, M. (2005) Insect-Plant Biology. Oxford University Press, Oxford, UK, 400 p.
|
[45]
|
Van Lenteren, J.C. (2012) Internet Book of Biological Control. International Organization for Biological Control, Zürich, Switzerland.
http://tinyurl.com/zk3rdrr
|
[46]
|
Scholtz, C.H. and Mansell, M.W. (2009) Insect Biodiversity in the Afrotropical Region. In: Foottit, R. and Adler, P., Eds., Insect Biodiversity: Science and Society, Blackwell Publishing, Hoboken, NJ, 69-82.
https://doi.org/10.1002/9781444308211.ch5
|
[47]
|
Macfadyen, S., Kramer, E.A., Parry, H.R. and Schellhorn, N.A. (2015) Temporal Change in Vegetation Productivity in Grain Production Landscapes: Linking Landscape Complexity with Pest and Natural Enemy Communities. Ecological Entomology, 40, 56-69. https://doi.org/10.1111/een.12213
|
[48]
|
Evans, T.A., Dawes, T.Z., Ward, P.R. and Lo, N. (2011) Ants and termites Increase Crop Yield in Dry Climate. Nature Communications, 2, Article No. 262.
https://doi.org/10.1038/ncomms1257
|
[49]
|
Merritt, R.W. and De Jong, G.D. (2015) Arthropod Communities in Terrestrial Environments. In: Benbow, M.E., Tomberlin, J.K. and Tarone, A.M., Eds., Carrion Ecology, Evolution, and Their Applications, CRC Press, Boca Raton, FL, 65-91.
|
[50]
|
Farwig, N., Brandl, R., Siemann, S., Wiener, F. and Muller, J. (2014) Decomposition Rate of Carrion Is Dependent on Composition Not Abundance of the Assemblages of Insect Scavengers. Oecologia, 175, 1291-1300.
https://doi.org/10.1007/s00442-014-2974-y
|
[51]
|
Richards, E.N. and Goff, M.L. (1997) Arthropod Succession on Exposed Carrion in Three Contrasting Tropical Habitats on Hawaii Island, Hawaii. Journal of Medical Entomology, 34, 328-339. https://doi.org/10.1093/jmedent/34.3.328
|
[52]
|
Mascaro, J. (2013) Origins of the Novel Ecosystems Concept. In: Hobbs. R., Hall, C.M., et al., Eds., Novel Ecosystems: Intervening in the New Ecological World Order, Wiley-Blackwell, Hoboken, NJ, 45-57.
https://doi.org/10.1002/9781118354186.ch5
|
[53]
|
Pearce, F. (2016) The New Wild-Why Invasive Species Will Be Nature’s Salvation. Icon Books Ltd., UK.
|
[54]
|
Schlaepfer, M.A., Sax, D.F. and Olden, J.D. (2011) The Potential Conservation Value of Non-Native Species. Conservation Biology, 25, 428-437.
https://doi.org/10.1111/j.1523-1739.2010.01646.x
|
[55]
|
DeBach, P. (1964) Biological Control of Insect Pests and Weeds. Cambridge University Press, Cambridge, UK, 844 p.
|
[56]
|
Cock, M.J.W., Murphy, S.T., Kairo, M.T.K., Thompson, E., Murphy, R.J. and Francis, A.W. (2016) Trends in the Classical Biological Control of Insect Pests by Insects: An Update of the BIOCAT Database. BioControl, 61, 349-363.
https://doi.org/10.1007/s10526-016-9726-3
|
[57]
|
Davis, A.L.V. (1996) Seasonal Dung Beetle Activity and Dung Dispersal in Selected South African Habitats: Implications for Pasture Improvement in Australia. Agriculture, Ecosystems and Environment, 58, 157-169.
https://doi.org/10.1016/0167-8809(96)01030-4
|
[58]
|
Tyndalebiscoe, M. and Vogt, W.G. (1991) Effects of Adding Exotic Dung Beetles to Native Fauna on Bush Fly Breeding in the Field. Entomophaga, 36, 395-401.
https://doi.org/10.1007/BF02377944
|
[59]
|
Losey, J.E. and Vaughan, M. (2006) The Economic Value of Ecological Services Provided by Insects. BioScience, 56, 311-323.
https://doi.org/10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2
|
[60]
|
Schwägerl, C. (2016) What’s Causing the Sharp Decline in Insects, and Why It Matters. Yale Environment 360, 6 July 2016.
|
[61]
|
Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., et al. (2013) Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 339, 1608-1611. https://doi.org/10.1126/science.1230200
|
[62]
|
Gallai, N., Salles, J.M., Settele, J. and Vaissiere, B.E. (2009) Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecological Economics, 68, 810-821. https://doi.org/10.1016/j.ecolecon.2008.06.014
|
[63]
|
Symondson, W.O.C., Sunderland, K.D. and Greenstone, M.H. (2002) Can Generalist Predators Be Effective Biocontrol Agents? Annual Review of Entomology, 47, 561-594. https://doi.org/10.1146/annurev.ento.47.091201.145240
|
[64]
|
Kromp, B. (1999) Carabid Beetles in Sustainable Agriculture: A Review on Pest Control Efficacy, Cultivation Impacts and Enhancement. Agriculture, Ecosystems & Environment, 74, 187-228. https://doi.org/10.1016/S0167-8809(99)00037-7
|
[65]
|
Robinson, R.A. and Sutherland, W.J. (2002) Post-War Changes in Arable Farming and Biodiversity in Great Britain. Journal of Applied Ecology, 39, 157-176.
https://doi.org/10.1046/j.1365-2664.2002.00695.x
|