[1]
|
N. F. Mott, “The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals,” Proceedings of the Physical Society, London, Section A, Vol. 62, No. 7, 1949, p. 416.
|
[2]
|
P. W. Anderson, “New Approach to the Theory of Super- Exchange Interactions,” Physical Review, Vol. 115, No. 1, 1959, pp. 2-13. doi:10.1103/PhysRev.115.2
|
[3]
|
W. A. Harrison, “Electronic Structure and the Properties of Solids—The Physics of the Chemical Bonds,” W. H. Freeman and Co., San Francisco, 1980.
|
[4]
|
V. I. Anisimov, J. Zaanen and O. K. Andersen, “Band Theory and Mott Insulators: Hubbard U instead of Stoner,” Physical Review B, Vol. 44, No. 3, 1991, pp. 943-954. doi:10.1103/PhysRevB.44.943
|
[5]
|
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, “Density-Functional Theory and Strong Interations: Orbital Ordering in Mott-Hubbard Insulators,” Physical Review B, Vol. 52, No. 8, 1995, pp. R5468-R5470.
doi:10.1103/PhysRevB.52.R5467
|
[6]
|
A. Messiah, “Quantum Mechanics,” Dover Publications, New York, 1999.
|
[7]
|
J. C. Slater, “The Calculation of Molecular Orbitals,” John Wiley & Sons, New York, 1979.
|
[8]
|
J. F. Janak and A. R. Williams, “Method for Calculating Wave Functions in a Nonspherical Potential,” Physical Review B, Vol. 23, No. 12, 1981, pp. 6301-6306.
doi:10.1103/PhysRevB.23.6301
|
[9]
|
F. W. Kutzler and G. S. Painter, “Energies of Atoms with Nonspherical Charge Densities Calculated with Nonlocal Density-Functional Theory,” Physical Review Letters, Vol. 59, No. 12, 1987, pp. 1285-1288.
doi:10.1103/PhysRevLett.59.1285
|
[10]
|
A. D. Becke, “Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies,” International Journal of Quantum Chemistry, Vol. 27, No. 5, 1985, pp. 585-594. doi:10.1002/qua.560270507
|
[11]
|
A. D. Becke, “Current Density in Exchange-Correlation Functionals: Application to Atomic States,” Journal of Chemical Physics, Vol. 117, No. 15, 2002, pp. 6935- 6938. doi:10.1063/1.1503772
|
[12]
|
E. Orestes, T. Marcasso and K. Capelle, “Density-Func- tional Calculation of Ionization Energies of Current- Carrying Atomic States,” Physical Review A, Vol. 68, No. 2, 2003, p. 022105. doi:10.1103/PhysRevA.68.022105
|
[13]
|
E. Orestes, A. B. F. da Silva and K. Capelle, “Energy Lowering of Current-Carrying Single-Particle States in Open-Shell atoms due to an Exchange-Correlation Vector Potential,” International Journal of Quantum Chemistry, Vol. 103, No. 5, 2005, pp. 516-522.
doi:10.1002/qua.20575
|
[14]
|
G. Vignale and M. Rasolt, “Density-Functional Theory in Strong Magnetic Fields,” Physical Review Letters, Vol. 59, No. 20, 1987, pp. 2360-2363.
doi:10.1103/PhysRevLett.59.2360
|
[15]
|
G. Vignale and M. Rasolt, “Current- and Spin-Density- Functional Theory for Inhomogeneous Electronic Systems in Strong Magnetic Fields,” Physical Review B, Vol. 37, No. 18, 1988, pp. 10685-10696.
doi:10.1103/PhysRevB.37.10685
|
[16]
|
M. Higuchi and A. Hasegawa, “A Relativistic Current and Spin-Density Functional Theory and a Single-Particle Equation,” Journal of the Physical Society of Japan, Vol. 66, No. 1, 1997, p. 149. doi:10.1143/JPSJ.66.149
|
[17]
|
M. Higuchi and A. Hasegawa, “Single-Particle Equation of Relativistic Current- and Spin-Density Functional Theory and Its Application to the Atomic Structure of the Lanthanide Series,” Journal of the Physical Society of Japan, Vol. 67, No. 6, 1998, pp. 2037-2047.
doi:10.1143/JPSJ.67.2037
|
[18]
|
M. Miyasita, K. Higuchi and M. Higuchi, “A Scheme for Calculating Atomic Structures beyond the Spherical Approximation,” Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 421-430. doi:10.4236/jmp.2011.25052
|
[19]
|
A. Narita, “Nonspherical Potential due to Orbital Polarization and Its Effect in Atoms—Approach to Hund’s Second Rule in Terms of One-Electron Picture,” Journal of the Physical Society of Japan, Vol. 77, 2008, p. 124303. doi:10.1143/JPSJ.77.124303
|
[20]
|
D. R. Hartree, “The Wave Mechanics of an Atom with a Noncoulomb Central Field. PartI: Theory and Method. Part II: Some Results and Discussions,” Proceedings of Cambridge Philosophical Society, Vol. 24, No. 1, 1928, pp. 111-132. doi:10.1017/S0305004100011920
|
[21]
|
V. Fock and Z. Physik, “N?herungsmethode zur L?sung des Quantenmechanischen Mehrk?rperproblems,” Zeitsch- rift Für Physik, Vol. 61, No. 1-2, 1930, pp. 126-148.
|
[22]
|
J. C. Slater, “A Simplification of the Hartree-Fock Me- thod,” Physical Review, Vol. 81, No. 3, 1951, pp. 385- 390. doi:10.1103/PhysRev.81.385
|
[23]
|
F. Herman and S. Skillman, “Atomic Structure Calcula- tions,” Prentice-Hall Inc., New Jersey, 1963.
|
[24]
|
T. Andersen, H. K. Haugen and H. Hotop, “Binding Energies in Atomic Negative Ions: III,” Journal of Physical and Chemical Reference Data, Vol. 28, 1999, p. 1511. doi:10.1063/1.556047
|
[25]
|
See Instance,
http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html.
|
[26]
|
N. F. Mott, “The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals,” Proceedings of the Physical Society, London, Section A, Vol. 62, No. 7, 1949, p. 416.
|
[27]
|
P. W. Anderson, “New Approach to the Theory of Super- Exchange Interactions,” Physical Review, Vol. 115, No. 1, 1959, pp. 2-13. doi:10.1103/PhysRev.115.2
|
[28]
|
W. A. Harrison, “Electronic Structure and the Properties of Solids—The Physics of the Chemical Bonds,” W. H. Freeman and Co., San Francisco, 1980.
|
[29]
|
V. I. Anisimov, J. Zaanen and O. K. Andersen, “Band Theory and Mott Insulators: Hubbard U instead of Stoner,” Physical Review B, Vol. 44, No. 3, 1991, pp. 943-954. doi:10.1103/PhysRevB.44.943
|
[30]
|
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, “Density-Functional Theory and Strong Interations: Orbital Ordering in Mott-Hubbard Insulators,” Physical Review B, Vol. 52, No. 8, 1995, pp. R5468-R5470.
doi:10.1103/PhysRevB.52.R5467
|
[31]
|
A. Messiah, “Quantum Mechanics,” Dover Publications, New York, 1999.
|
[32]
|
J. C. Slater, “The Calculation of Molecular Orbitals,” John Wiley & Sons, New York, 1979.
|
[33]
|
J. F. Janak and A. R. Williams, “Method for Calculating Wave Functions in a Nonspherical Potential,” Physical Review B, Vol. 23, No. 12, 1981, pp. 6301-6306.
doi:10.1103/PhysRevB.23.6301
|
[34]
|
F. W. Kutzler and G. S. Painter, “Energies of Atoms with Nonspherical Charge Densities Calculated with Nonlocal Density-Functional Theory,” Physical Review Letters, Vol. 59, No. 12, 1987, pp. 1285-1288.
doi:10.1103/PhysRevLett.59.1285
|
[35]
|
A. D. Becke, “Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies,” International Journal of Quantum Chemistry, Vol. 27, No. 5, 1985, pp. 585-594. doi:10.1002/qua.560270507
|
[36]
|
A. D. Becke, “Current Density in Exchange-Correlation Functionals: Application to Atomic States,” Journal of Chemical Physics, Vol. 117, No. 15, 2002, pp. 6935- 6938. doi:10.1063/1.1503772
|
[37]
|
E. Orestes, T. Marcasso and K. Capelle, “Density-Func- tional Calculation of Ionization Energies of Current- Carrying Atomic States,” Physical Review A, Vol. 68, No. 2, 2003, p. 022105. doi:10.1103/PhysRevA.68.022105
|
[38]
|
E. Orestes, A. B. F. da Silva and K. Capelle, “Energy Lowering of Current-Carrying Single-Particle States in Open-Shell atoms due to an Exchange-Correlation Vector Potential,” International Journal of Quantum Chemistry, Vol. 103, No. 5, 2005, pp. 516-522.
doi:10.1002/qua.20575
|
[39]
|
G. Vignale and M. Rasolt, “Density-Functional Theory in Strong Magnetic Fields,” Physical Review Letters, Vol. 59, No. 20, 1987, pp. 2360-2363.
doi:10.1103/PhysRevLett.59.2360
|
[40]
|
G. Vignale and M. Rasolt, “Current- and Spin-Density- Functional Theory for Inhomogeneous Electronic Systems in Strong Magnetic Fields,” Physical Review B, Vol. 37, No. 18, 1988, pp. 10685-10696.
doi:10.1103/PhysRevB.37.10685
|
[41]
|
M. Higuchi and A. Hasegawa, “A Relativistic Current and Spin-Density Functional Theory and a Single-Particle Equation,” Journal of the Physical Society of Japan, Vol. 66, No. 1, 1997, p. 149. doi:10.1143/JPSJ.66.149
|
[42]
|
M. Higuchi and A. Hasegawa, “Single-Particle Equation of Relativistic Current- and Spin-Density Functional Theory and Its Application to the Atomic Structure of the Lanthanide Series,” Journal of the Physical Society of Japan, Vol. 67, No. 6, 1998, pp. 2037-2047.
doi:10.1143/JPSJ.67.2037
|
[43]
|
M. Miyasita, K. Higuchi and M. Higuchi, “A Scheme for Calculating Atomic Structures beyond the Spherical Approximation,” Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 421-430. doi:10.4236/jmp.2011.25052
|
[44]
|
A. Narita, “Nonspherical Potential due to Orbital Polarization and Its Effect in Atoms—Approach to Hund’s Second Rule in Terms of One-Electron Picture,” Journal of the Physical Society of Japan, Vol. 77, 2008, p. 124303. doi:10.1143/JPSJ.77.124303
|
[45]
|
D. R. Hartree, “The Wave Mechanics of an Atom with a Noncoulomb Central Field. PartI: Theory and Method. Part II: Some Results and Discussions,” Proceedings of Cambridge Philosophical Society, Vol. 24, No. 1, 1928, pp. 111-132. doi:10.1017/S0305004100011920
|
[46]
|
V. Fock and Z. Physik, “N?herungsmethode zur L?sung des Quantenmechanischen Mehrk?rperproblems,” Zeitsch- rift Für Physik, Vol. 61, No. 1-2, 1930, pp. 126-148.
|
[47]
|
J. C. Slater, “A Simplification of the Hartree-Fock Me- thod,” Physical Review, Vol. 81, No. 3, 1951, pp. 385- 390. doi:10.1103/PhysRev.81.385
|
[48]
|
F. Herman and S. Skillman, “Atomic Structure Calcula- tions,” Prentice-Hall Inc., New Jersey, 1963.
|
[49]
|
T. Andersen, H. K. Haugen and H. Hotop, “Binding Energies in Atomic Negative Ions: III,” Journal of Physical and Chemical Reference Data, Vol. 28, 1999, p. 1511. doi:10.1063/1.556047
|
[50]
|
See Instance,
http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html.
|
[51]
|
N. F. Mott, “The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals,” Proceedings of the Physical Society, London, Section A, Vol. 62, No. 7, 1949, p. 416.
|
[52]
|
P. W. Anderson, “New Approach to the Theory of Super- Exchange Interactions,” Physical Review, Vol. 115, No. 1, 1959, pp. 2-13. doi:10.1103/PhysRev.115.2
|
[53]
|
W. A. Harrison, “Electronic Structure and the Properties of Solids—The Physics of the Chemical Bonds,” W. H. Freeman and Co., San Francisco, 1980.
|
[54]
|
V. I. Anisimov, J. Zaanen and O. K. Andersen, “Band Theory and Mott Insulators: Hubbard U instead of Stoner,” Physical Review B, Vol. 44, No. 3, 1991, pp. 943-954. doi:10.1103/PhysRevB.44.943
|
[55]
|
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, “Density-Functional Theory and Strong Interations: Orbital Ordering in Mott-Hubbard Insulators,” Physical Review B, Vol. 52, No. 8, 1995, pp. R5468-R5470.
doi:10.1103/PhysRevB.52.R5467
|
[56]
|
A. Messiah, “Quantum Mechanics,” Dover Publications, New York, 1999.
|
[57]
|
J. C. Slater, “The Calculation of Molecular Orbitals,” John Wiley & Sons, New York, 1979.
|
[58]
|
J. F. Janak and A. R. Williams, “Method for Calculating Wave Functions in a Nonspherical Potential,” Physical Review B, Vol. 23, No. 12, 1981, pp. 6301-6306.
doi:10.1103/PhysRevB.23.6301
|
[59]
|
F. W. Kutzler and G. S. Painter, “Energies of Atoms with Nonspherical Charge Densities Calculated with Nonlocal Density-Functional Theory,” Physical Review Letters, Vol. 59, No. 12, 1987, pp. 1285-1288.
doi:10.1103/PhysRevLett.59.1285
|
[60]
|
A. D. Becke, “Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies,” International Journal of Quantum Chemistry, Vol. 27, No. 5, 1985, pp. 585-594. doi:10.1002/qua.560270507
|
[61]
|
A. D. Becke, “Current Density in Exchange-Correlation Functionals: Application to Atomic States,” Journal of Chemical Physics, Vol. 117, No. 15, 2002, pp. 6935- 6938. doi:10.1063/1.1503772
|
[62]
|
E. Orestes, T. Marcasso and K. Capelle, “Density-Func- tional Calculation of Ionization Energies of Current- Carrying Atomic States,” Physical Review A, Vol. 68, No. 2, 2003, p. 022105. doi:10.1103/PhysRevA.68.022105
|
[63]
|
E. Orestes, A. B. F. da Silva and K. Capelle, “Energy Lowering of Current-Carrying Single-Particle States in Open-Shell atoms due to an Exchange-Correlation Vector Potential,” International Journal of Quantum Chemistry, Vol. 103, No. 5, 2005, pp. 516-522.
doi:10.1002/qua.20575
|
[64]
|
G. Vignale and M. Rasolt, “Density-Functional Theory in Strong Magnetic Fields,” Physical Review Letters, Vol. 59, No. 20, 1987, pp. 2360-2363.
doi:10.1103/PhysRevLett.59.2360
|
[65]
|
G. Vignale and M. Rasolt, “Current- and Spin-Density- Functional Theory for Inhomogeneous Electronic Systems in Strong Magnetic Fields,” Physical Review B, Vol. 37, No. 18, 1988, pp. 10685-10696.
doi:10.1103/PhysRevB.37.10685
|
[66]
|
M. Higuchi and A. Hasegawa, “A Relativistic Current and Spin-Density Functional Theory and a Single-Particle Equation,” Journal of the Physical Society of Japan, Vol. 66, No. 1, 1997, p. 149. doi:10.1143/JPSJ.66.149
|
[67]
|
M. Higuchi and A. Hasegawa, “Single-Particle Equation of Relativistic Current- and Spin-Density Functional Theory and Its Application to the Atomic Structure of the Lanthanide Series,” Journal of the Physical Society of Japan, Vol. 67, No. 6, 1998, pp. 2037-2047.
doi:10.1143/JPSJ.67.2037
|
[68]
|
M. Miyasita, K. Higuchi and M. Higuchi, “A Scheme for Calculating Atomic Structures beyond the Spherical Approximation,” Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 421-430. doi:10.4236/jmp.2011.25052
|
[69]
|
A. Narita, “Nonspherical Potential due to Orbital Polarization and Its Effect in Atoms—Approach to Hund’s Second Rule in Terms of One-Electron Picture,” Journal of the Physical Society of Japan, Vol. 77, 2008, p. 124303. doi:10.1143/JPSJ.77.124303
|
[70]
|
D. R. Hartree, “The Wave Mechanics of an Atom with a Noncoulomb Central Field. PartI: Theory and Method. Part II: Some Results and Discussions,” Proceedings of Cambridge Philosophical Society, Vol. 24, No. 1, 1928, pp. 111-132. doi:10.1017/S0305004100011920
|
[71]
|
V. Fock and Z. Physik, “N?herungsmethode zur L?sung des Quantenmechanischen Mehrk?rperproblems,” Zeitsch- rift Für Physik, Vol. 61, No. 1-2, 1930, pp. 126-148.
|
[72]
|
J. C. Slater, “A Simplification of the Hartree-Fock Me- thod,” Physical Review, Vol. 81, No. 3, 1951, pp. 385- 390. doi:10.1103/PhysRev.81.385
|
[73]
|
F. Herman and S. Skillman, “Atomic Structure Calcula- tions,” Prentice-Hall Inc., New Jersey, 1963.
|
[74]
|
T. Andersen, H. K. Haugen and H. Hotop, “Binding Energies in Atomic Negative Ions: III,” Journal of Physical and Chemical Reference Data, Vol. 28, 1999, p. 1511. doi:10.1063/1.556047
|
[75]
|
See Instance,
http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html.
|
[76]
|
N. F. Mott, “The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals,” Proceedings of the Physical Society, London, Section A, Vol. 62, No. 7, 1949, p. 416.
|
[77]
|
P. W. Anderson, “New Approach to the Theory of Super- Exchange Interactions,” Physical Review, Vol. 115, No. 1, 1959, pp. 2-13. doi:10.1103/PhysRev.115.2
|
[78]
|
W. A. Harrison, “Electronic Structure and the Properties of Solids—The Physics of the Chemical Bonds,” W. H. Freeman and Co., San Francisco, 1980.
|
[79]
|
V. I. Anisimov, J. Zaanen and O. K. Andersen, “Band Theory and Mott Insulators: Hubbard U instead of Stoner,” Physical Review B, Vol. 44, No. 3, 1991, pp. 943-954. doi:10.1103/PhysRevB.44.943
|
[80]
|
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, “Density-Functional Theory and Strong Interations: Orbital Ordering in Mott-Hubbard Insulators,” Physical Review B, Vol. 52, No. 8, 1995, pp. R5468-R5470.
doi:10.1103/PhysRevB.52.R5467
|
[81]
|
A. Messiah, “Quantum Mechanics,” Dover Publications, New York, 1999.
|
[82]
|
J. C. Slater, “The Calculation of Molecular Orbitals,” John Wiley & Sons, New York, 1979.
|
[83]
|
J. F. Janak and A. R. Williams, “Method for Calculating Wave Functions in a Nonspherical Potential,” Physical Review B, Vol. 23, No. 12, 1981, pp. 6301-6306.
doi:10.1103/PhysRevB.23.6301
|
[84]
|
F. W. Kutzler and G. S. Painter, “Energies of Atoms with Nonspherical Charge Densities Calculated with Nonlocal Density-Functional Theory,” Physical Review Letters, Vol. 59, No. 12, 1987, pp. 1285-1288.
doi:10.1103/PhysRevLett.59.1285
|
[85]
|
A. D. Becke, “Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies,” International Journal of Quantum Chemistry, Vol. 27, No. 5, 1985, pp. 585-594. doi:10.1002/qua.560270507
|
[86]
|
A. D. Becke, “Current Density in Exchange-Correlation Functionals: Application to Atomic States,” Journal of Chemical Physics, Vol. 117, No. 15, 2002, pp. 6935- 6938. doi:10.1063/1.1503772
|
[87]
|
E. Orestes, T. Marcasso and K. Capelle, “Density-Func- tional Calculation of Ionization Energies of Current- Carrying Atomic States,” Physical Review A, Vol. 68, No. 2, 2003, p. 022105. doi:10.1103/PhysRevA.68.022105
|
[88]
|
E. Orestes, A. B. F. da Silva and K. Capelle, “Energy Lowering of Current-Carrying Single-Particle States in Open-Shell atoms due to an Exchange-Correlation Vector Potential,” International Journal of Quantum Chemistry, Vol. 103, No. 5, 2005, pp. 516-522.
doi:10.1002/qua.20575
|
[89]
|
G. Vignale and M. Rasolt, “Density-Functional Theory in Strong Magnetic Fields,” Physical Review Letters, Vol. 59, No. 20, 1987, pp. 2360-2363.
doi:10.1103/PhysRevLett.59.2360
|
[90]
|
G. Vignale and M. Rasolt, “Current- and Spin-Density- Functional Theory for Inhomogeneous Electronic Systems in Strong Magnetic Fields,” Physical Review B, Vol. 37, No. 18, 1988, pp. 10685-10696.
doi:10.1103/PhysRevB.37.10685
|
[91]
|
M. Higuchi and A. Hasegawa, “A Relativistic Current and Spin-Density Functional Theory and a Single-Particle Equation,” Journal of the Physical Society of Japan, Vol. 66, No. 1, 1997, p. 149. doi:10.1143/JPSJ.66.149
|
[92]
|
M. Higuchi and A. Hasegawa, “Single-Particle Equation of Relativistic Current- and Spin-Density Functional Theory and Its Application to the Atomic Structure of the Lanthanide Series,” Journal of the Physical Society of Japan, Vol. 67, No. 6, 1998, pp. 2037-2047.
doi:10.1143/JPSJ.67.2037
|
[93]
|
M. Miyasita, K. Higuchi and M. Higuchi, “A Scheme for Calculating Atomic Structures beyond the Spherical Approximation,” Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 421-430. doi:10.4236/jmp.2011.25052
|
[94]
|
A. Narita, “Nonspherical Potential due to Orbital Polarization and Its Effect in Atoms—Approach to Hund’s Second Rule in Terms of One-Electron Picture,” Journal of the Physical Society of Japan, Vol. 77, 2008, p. 124303. doi:10.1143/JPSJ.77.124303
|
[95]
|
D. R. Hartree, “The Wave Mechanics of an Atom with a Noncoulomb Central Field. PartI: Theory and Method. Part II: Some Results and Discussions,” Proceedings of Cambridge Philosophical Society, Vol. 24, No. 1, 1928, pp. 111-132. doi:10.1017/S0305004100011920
|
[96]
|
V. Fock and Z. Physik, “N?herungsmethode zur L?sung des Quantenmechanischen Mehrk?rperproblems,” Zeitsch- rift Für Physik, Vol. 61, No. 1-2, 1930, pp. 126-148.
|
[97]
|
J. C. Slater, “A Simplification of the Hartree-Fock Me- thod,” Physical Review, Vol. 81, No. 3, 1951, pp. 385- 390. doi:10.1103/PhysRev.81.385
|
[98]
|
F. Herman and S. Skillman, “Atomic Structure Calcula- tions,” Prentice-Hall Inc., New Jersey, 1963.
|
[99]
|
T. Andersen, H. K. Haugen and H. Hotop, “Binding Energies in Atomic Negative Ions: III,” Journal of Physical and Chemical Reference Data, Vol. 28, 1999, p. 1511. doi:10.1063/1.556047
|
[100]
|
See Instance,
http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html.
|
[101]
|
N. F. Mott, “The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals,” Proceedings of the Physical Society, London, Section A, Vol. 62, No. 7, 1949, p. 416.
|
[102]
|
P. W. Anderson, “New Approach to the Theory of Super- Exchange Interactions,” Physical Review, Vol. 115, No. 1, 1959, pp. 2-13. doi:10.1103/PhysRev.115.2
|
[103]
|
W. A. Harrison, “Electronic Structure and the Properties of Solids—The Physics of the Chemical Bonds,” W. H. Freeman and Co., San Francisco, 1980.
|
[104]
|
V. I. Anisimov, J. Zaanen and O. K. Andersen, “Band Theory and Mott Insulators: Hubbard U instead of Stoner,” Physical Review B, Vol. 44, No. 3, 1991, pp. 943-954. doi:10.1103/PhysRevB.44.943
|
[105]
|
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, “Density-Functional Theory and Strong Interations: Orbital Ordering in Mott-Hubbard Insulators,” Physical Review B, Vol. 52, No. 8, 1995, pp. R5468-R5470.
doi:10.1103/PhysRevB.52.R5467
|
[106]
|
A. Messiah, “Quantum Mechanics,” Dover Publications, New York, 1999.
|
[107]
|
J. C. Slater, “The Calculation of Molecular Orbitals,” John Wiley & Sons, New York, 1979.
|
[108]
|
J. F. Janak and A. R. Williams, “Method for Calculating Wave Functions in a Nonspherical Potential,” Physical Review B, Vol. 23, No. 12, 1981, pp. 6301-6306.
doi:10.1103/PhysRevB.23.6301
|
[109]
|
F. W. Kutzler and G. S. Painter, “Energies of Atoms with Nonspherical Charge Densities Calculated with Nonlocal Density-Functional Theory,” Physical Review Letters, Vol. 59, No. 12, 1987, pp. 1285-1288.
doi:10.1103/PhysRevLett.59.1285
|
[110]
|
A. D. Becke, “Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies,” International Journal of Quantum Chemistry, Vol. 27, No. 5, 1985, pp. 585-594. doi:10.1002/qua.560270507
|
[111]
|
A. D. Becke, “Current Density in Exchange-Correlation Functionals: Application to Atomic States,” Journal of Chemical Physics, Vol. 117, No. 15, 2002, pp. 6935- 6938. doi:10.1063/1.1503772
|
[112]
|
E. Orestes, T. Marcasso and K. Capelle, “Density-Func- tional Calculation of Ionization Energies of Current- Carrying Atomic States,” Physical Review A, Vol. 68, No. 2, 2003, p. 022105. doi:10.1103/PhysRevA.68.022105
|
[113]
|
E. Orestes, A. B. F. da Silva and K. Capelle, “Energy Lowering of Current-Carrying Single-Particle States in Open-Shell atoms due to an Exchange-Correlation Vector Potential,” International Journal of Quantum Chemistry, Vol. 103, No. 5, 2005, pp. 516-522.
doi:10.1002/qua.20575
|
[114]
|
G. Vignale and M. Rasolt, “Density-Functional Theory in Strong Magnetic Fields,” Physical Review Letters, Vol. 59, No. 20, 1987, pp. 2360-2363.
doi:10.1103/PhysRevLett.59.2360
|
[115]
|
G. Vignale and M. Rasolt, “Current- and Spin-Density- Functional Theory for Inhomogeneous Electronic Systems in Strong Magnetic Fields,” Physical Review B, Vol. 37, No. 18, 1988, pp. 10685-10696.
doi:10.1103/PhysRevB.37.10685
|
[116]
|
M. Higuchi and A. Hasegawa, “A Relativistic Current and Spin-Density Functional Theory and a Single-Particle Equation,” Journal of the Physical Society of Japan, Vol. 66, No. 1, 1997, p. 149. doi:10.1143/JPSJ.66.149
|
[117]
|
M. Higuchi and A. Hasegawa, “Single-Particle Equation of Relativistic Current- and Spin-Density Functional Theory and Its Application to the Atomic Structure of the Lanthanide Series,” Journal of the Physical Society of Japan, Vol. 67, No. 6, 1998, pp. 2037-2047.
doi:10.1143/JPSJ.67.2037
|
[118]
|
M. Miyasita, K. Higuchi and M. Higuchi, “A Scheme for Calculating Atomic Structures beyond the Spherical Approximation,” Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 421-430. doi:10.4236/jmp.2011.25052
|
[119]
|
A. Narita, “Nonspherical Potential due to Orbital Polarization and Its Effect in Atoms—Approach to Hund’s Second Rule in Terms of One-Electron Picture,” Journal of the Physical Society of Japan, Vol. 77, 2008, p. 124303. doi:10.1143/JPSJ.77.124303
|
[120]
|
D. R. Hartree, “The Wave Mechanics of an Atom with a Noncoulomb Central Field. PartI: Theory and Method. Part II: Some Results and Discussions,” Proceedings of Cambridge Philosophical Society, Vol. 24, No. 1, 1928, pp. 111-132. doi:10.1017/S0305004100011920
|
[121]
|
V. Fock and Z. Physik, “N?herungsmethode zur L?sung des Quantenmechanischen Mehrk?rperproblems,” Zeitsch- rift Für Physik, Vol. 61, No. 1-2, 1930, pp. 126-148.
|
[122]
|
J. C. Slater, “A Simplification of the Hartree-Fock Me- thod,” Physical Review, Vol. 81, No. 3, 1951, pp. 385- 390. doi:10.1103/PhysRev.81.385
|
[123]
|
F. Herman and S. Skillman, “Atomic Structure Calcula- tions,” Prentice-Hall Inc., New Jersey, 1963.
|
[124]
|
T. Andersen, H. K. Haugen and H. Hotop, “Binding Energies in Atomic Negative Ions: III,” Journal of Physical and Chemical Reference Data, Vol. 28, 1999, p. 1511. doi:10.1063/1.556047
|
[125]
|
See Instance,
http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html.
|
[126]
|
N. F. Mott, “The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals,” Proceedings of the Physical Society, London, Section A, Vol. 62, No. 7, 1949, p. 416.
|
[127]
|
P. W. Anderson, “New Approach to the Theory of Super- Exchange Interactions,” Physical Review, Vol. 115, No. 1, 1959, pp. 2-13. doi:10.1103/PhysRev.115.2
|
[128]
|
W. A. Harrison, “Electronic Structure and the Properties of Solids—The Physics of the Chemical Bonds,” W. H. Freeman and Co., San Francisco, 1980.
|
[129]
|
V. I. Anisimov, J. Zaanen and O. K. Andersen, “Band Theory and Mott Insulators: Hubbard U instead of Stoner,” Physical Review B, Vol. 44, No. 3, 1991, pp. 943-954. doi:10.1103/PhysRevB.44.943
|
[130]
|
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, “Density-Functional Theory and Strong Interations: Orbital Ordering in Mott-Hubbard Insulators,” Physical Review B, Vol. 52, No. 8, 1995, pp. R5468-R5470.
doi:10.1103/PhysRevB.52.R5467
|
[131]
|
A. Messiah, “Quantum Mechanics,” Dover Publications, New York, 1999.
|
[132]
|
J. C. Slater, “The Calculation of Molecular Orbitals,” John Wiley & Sons, New York, 1979.
|
[133]
|
J. F. Janak and A. R. Williams, “Method for Calculating Wave Functions in a Nonspherical Potential,” Physical Review B, Vol. 23, No. 12, 1981, pp. 6301-6306.
doi:10.1103/PhysRevB.23.6301
|
[134]
|
F. W. Kutzler and G. S. Painter, “Energies of Atoms with Nonspherical Charge Densities Calculated with Nonlocal Density-Functional Theory,” Physical Review Letters, Vol. 59, No. 12, 1987, pp. 1285-1288.
doi:10.1103/PhysRevLett.59.1285
|
[135]
|
A. D. Becke, “Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies,” International Journal of Quantum Chemistry, Vol. 27, No. 5, 1985, pp. 585-594. doi:10.1002/qua.560270507
|
[136]
|
A. D. Becke, “Current Density in Exchange-Correlation Functionals: Application to Atomic States,” Journal of Chemical Physics, Vol. 117, No. 15, 2002, pp. 6935- 6938. doi:10.1063/1.1503772
|
[137]
|
E. Orestes, T. Marcasso and K. Capelle, “Density-Func- tional Calculation of Ionization Energies of Current- Carrying Atomic States,” Physical Review A, Vol. 68, No. 2, 2003, p. 022105. doi:10.1103/PhysRevA.68.022105
|
[138]
|
E. Orestes, A. B. F. da Silva and K. Capelle, “Energy Lowering of Current-Carrying Single-Particle States in Open-Shell atoms due to an Exchange-Correlation Vector Potential,” International Journal of Quantum Chemistry, Vol. 103, No. 5, 2005, pp. 516-522.
doi:10.1002/qua.20575
|
[139]
|
G. Vignale and M. Rasolt, “Density-Functional Theory in Strong Magnetic Fields,” Physical Review Letters, Vol. 59, No. 20, 1987, pp. 2360-2363.
doi:10.1103/PhysRevLett.59.2360
|
[140]
|
G. Vignale and M. Rasolt, “Current- and Spin-Density- Functional Theory for Inhomogeneous Electronic Systems in Strong Magnetic Fields,” Physical Review B, Vol. 37, No. 18, 1988, pp. 10685-10696.
doi:10.1103/PhysRevB.37.10685
|
[141]
|
M. Higuchi and A. Hasegawa, “A Relativistic Current and Spin-Density Functional Theory and a Single-Particle Equation,” Journal of the Physical Society of Japan, Vol. 66, No. 1, 1997, p. 149. doi:10.1143/JPSJ.66.149
|
[142]
|
M. Higuchi and A. Hasegawa, “Single-Particle Equation of Relativistic Current- and Spin-Density Functional Theory and Its Application to the Atomic Structure of the Lanthanide Series,” Journal of the Physical Society of Japan, Vol. 67, No. 6, 1998, pp. 2037-2047.
doi:10.1143/JPSJ.67.2037
|
[143]
|
M. Miyasita, K. Higuchi and M. Higuchi, “A Scheme for Calculating Atomic Structures beyond the Spherical Approximation,” Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 421-430. doi:10.4236/jmp.2011.25052
|
[144]
|
A. Narita, “Nonspherical Potential due to Orbital Polarization and Its Effect in Atoms—Approach to Hund’s Second Rule in Terms of One-Electron Picture,” Journal of the Physical Society of Japan, Vol. 77, 2008, p. 124303. doi:10.1143/JPSJ.77.124303
|
[145]
|
D. R. Hartree, “The Wave Mechanics of an Atom with a Noncoulomb Central Field. PartI: Theory and Method. Part II: Some Results and Discussions,” Proceedings of Cambridge Philosophical Society, Vol. 24, No. 1, 1928, pp. 111-132. doi:10.1017/S0305004100011920
|
[146]
|
V. Fock and Z. Physik, “N?herungsmethode zur L?sung des Quantenmechanischen Mehrk?rperproblems,” Zeitsch- rift Für Physik, Vol. 61, No. 1-2, 1930, pp. 126-148.
|
[147]
|
J. C. Slater, “A Simplification of the Hartree-Fock Me- thod,” Physical Review, Vol. 81, No. 3, 1951, pp. 385- 390. doi:10.1103/PhysRev.81.385
|
[148]
|
F. Herman and S. Skillman, “Atomic Structure Calcula- tions,” Prentice-Hall Inc., New Jersey, 1963.
|
[149]
|
T. Andersen, H. K. Haugen and H. Hotop, “Binding Energies in Atomic Negative Ions: III,” Journal of Physical and Chemical Reference Data, Vol. 28, 1999, p. 1511. doi:10.1063/1.556047
|
[150]
|
See Instance,
http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html.
|